计算物理 ›› 2012, Vol. 29 ›› Issue (2): 263-270.

• 论文 • 上一篇    下一篇

弧长法在斜直井内管柱非线性屈曲分析中的应用

谈梅兰, 武国玉   

  1. 江苏大学力学与工程科学系, 江苏 镇江 212013
  • 收稿日期:2011-04-29 修回日期:2011-07-28 出版日期:2012-03-25 发布日期:2012-03-25
  • 作者简介:谈梅兰(1959-),女,博士,教授,主要从事工程问题的力学计算建模,E-mail:tanml@ujs.edu.cn
  • 基金资助:
    国家自然科学基金(10972105)资助项目

Arc-length Method for Nonlinear Buckling Analysis of Tubular in Deviated Wells

TAN Meilan, WU Guoyu   

  1. Department of Mechanics & Engineering Science, Jiangsu University, Zhenjiang 212013, China
  • Received:2011-04-29 Revised:2011-07-28 Online:2012-03-25 Published:2012-03-25

摘要: 对于斜直井内底部-段管柱的后屈曲问题,基于受径向约束管柱的微分求积(DQ,Differential Quadrature)单元,构建了弧长迭代法.给出详细的迭代步骤和迭代初值的确定方法,对不同端部侧向约束条件下的管柱非线性屈曲进行迭代计算.并与现有文献中的近似解析解、实验结果和纯载荷增量迭代法的数值计算结果进行比较.结果显示,本文方法克服了有限单元法在处理管柱自重时的困难,同时能自动调节增量步长,跟踪管柱非线性后屈曲平衡路径的全过程.计算效率高、收敛性好、易于实施,可以用来分析斜直井内管柱的非线性屈曲问题.

关键词: 非线性, 屈曲, 弧长法, 微分求积单元, 管柱

Abstract: Based on differential quadrature (DQ) element of tubular with a radial constraint,an arc-length incremental iteration method is established.It is used for the post-buckling analysis of tubular in a deviated well bottom.Detailed iteration steps and method of determining initial values of iteration are given.Iterative calculations are carried out for nonlinear buckling of tubular under various end lateral constraints in deviated wells.Numerical results are compared with approximate analytical solution,experimental data and numerical results obtained with purely incremental methods in literature.It shows that the developed method overcomes difficulties encountered in finite element method in dealing with tubular weight.At the same time,it is capable to adjust automatically increment step and trace complex path in the space load/displacement of tubular nonlinear post-buckling.The method is of high efficiency,good convergence,easy to implement.It can be used to analyze nonlinear buckling of tubular in deviated wells.

Key words: nonlinear, buckling, arc-length method, differential quadrature element, tubular

中图分类号: