计算物理 ›› 2005, Vol. 22 ›› Issue (4): 337-343.

• 研究论文 • 上一篇    下一篇

Fitz Hugh-Nagumo神经元网络的联想记忆与分割

彭建华, 于洪洁, 刘延柱   

  1. 上海交通大学力学系, 上海 200240
  • 收稿日期:2004-03-24 修回日期:2004-11-22 出版日期:2005-07-25 发布日期:2005-07-25
  • 作者简介:彭建华(1965-),男,江西,副教授,博士,从事非线性动力学及脑科学方面的研究,上海交通大学力学系200240.
  • 基金资助:
    国家自然科学基金(10272074)资助项目

Associative Memory and Segmentation in a Network Composed of Spiking Neurons

PENG Jian-hua, YU Hong-jie, LIU Yan-zhu   

  1. Department of Mechanics, Shanghai Jiaotong University, Shanghai 200240, China
  • Received:2004-03-24 Revised:2004-11-22 Online:2005-07-25 Published:2005-07-25

摘要: 以广泛讨论的Fitz Hugh-Nagumo神经元节点组成脉动神经元网络,从神经系统空时模式编码理论研究网络的记忆(或模式)存储与时间分割问题.给定一个输入模式,它是几种模式的叠加,网络能够以一部分神经元同步发放的形式一个接一个地分割出每一种模式.如果输入的模式有缺损,系统能够把它们恢复成原型,即神经网络的联想记忆功能.模拟需要调节耦合强度和噪声强度等参数使得网络在特定的参数值和中等强度噪声达到最优的时间分割,与广泛讨论的随机共振现象一致.

关键词: Fit Hugh-Nagumo, 空时模式, 神经元, 联想记忆, 随机共振, 同步, 分割

Abstract: We present temporal segmentation and retrieval of stored memories or patterns with neural networks of a widely used model, the Fitzhugh-Nagumo neurons. For a superposition of several stored input patterns, it is shown that the proposed neuronal network is capable of segmenting out each pattern one after another in the time domain as synchronous firings of a subgroup of neurons. And as a corrupted input pattern is presented, the network is shown to be able to retrieve the perfect one. That is to say it has the function of associative memory. By adjusting parameters as coupling strength and intensity of the noise it is shown that the temporal segmentation attains its optimal performance at intermediate noise intensity, which is reminiscent of the stochastic resonance observed in the coupled spiking neuronal networks.

Key words: Fitzhugh-Nagumo, spatiotemporal pattern, neuron, associative memory, stochastic resonance, synchronization, segmentation

中图分类号: