计算物理 ›› 1999, Vol. 16 ›› Issue (3): 309-315.

• 论文 • 上一篇    下一篇

从混沌时间序列同时计算关联维和Kolmogorov熵

赵贵兵, 石炎福, 段文锋, 余华瑞   

  1. 四川联合大学化工系, 成都 610065
  • 收稿日期:1998-01-21 修回日期:1998-10-14 出版日期:1999-05-25 发布日期:1999-05-25
  • 作者简介:赵贵兵,男,26,博士生,四川联合大学西区化工系
  • 基金资助:
    国家自然科学基金资助课题

Computing fractal dimension and the kolmogorov entropy from chaotic time series

Zhao Guibing, Shi Yanfu, Duan Wenfeng, Yu Huarui   

  1. Department of Chemical Engineering, Sichuan Union University, Chengdu 610065
  • Received:1998-01-21 Revised:1998-10-14 Online:1999-05-25 Published:1999-05-25

摘要: 在G-P算法的基础上提出用最小二乘法从时间序列同时计算出关联维和Kolmogorov熵的方法。对混沌系统,从本方法得出的关联维是最优的,同时也得到了Kolmogorov熵的稳定估计。并用Rosler吸引子和Lorenz吸引子为例证实了这一算法。

关键词: 时间序列, 关联维, Kolmogorov熵, 算法

Abstract: On the basis of the G-P algorithm it proposes an optimal algorithm for computing simultaneously the correlation dimension and the Kolmogorov entropy from time series.The correlation dimension obtained from this method is optimal and the stable estimation of the Kolmogorov entropy is also obtained.The applicability of the method is illustrated with two examples,viz.,the Lorenz attractor and Rossler attractor.

Key words: time series, correlation dimension, Kolmogorov entropy, algorithm

中图分类号: