计算物理 ›› 2013, Vol. 30 ›› Issue (6): 815-824.

• 论文 • 上一篇    下一篇

滴形颗粒在通道中沉降的格子Boltzmann-虚拟区域方法模拟

聂德明, 郑梦娇, 张凯   

  1. 中国计量学院计量测试工程学院, 杭州 310018
  • 收稿日期:2013-01-28 修回日期:2013-06-16 出版日期:2013-11-25 发布日期:2013-11-25
  • 作者简介:聂德明(1979-),male,PhD major in multiphase flows,E-mail:nieinhz@cjlu.edu.cn
  • 基金资助:
    Supported by the Project of the National Natural Science Foundation of China (No.11272302);the National Program on Key Basic Research Project of China (No.2011CB706501)

LB-DF/FD Simulation of a Drop-shaped Particle in Two Dimensions Settling in a Vertical Channel

NIE Deming, ZHENG Mengjiao, ZHANG Kai   

  1. Institute of Fluid Mechanics, China Jiliang University, Hangzhou 310018, China
  • Received:2013-01-28 Revised:2013-06-16 Online:2013-11-25 Published:2013-11-25
  • Supported by:
    Supported by the Project of the National Natural Science Foundation of China (No.11272302);the National Program on Key Basic Research Project of China (No.2011CB706501)

摘要: 采用格子Boltzmann-虚拟区域方法对滴形颗粒在垂直通道中的沉降过程进行直接数值模拟.通过格子Boltzmann方法求解N-S方程,流体与固体之间的相互作用通过虚拟区域方法描述.研究雷诺数在10-2到100范围内颗粒形状因子对其摩擦系数和阻力系数的影响.为便于比较,给出了圆形颗粒沉降的结果.结果发现,当雷诺数小于1的时候,颗粒的摩擦系数始终保持常数,而当雷诺数大于1时摩擦系数随雷诺数的增大而增大.此外,当雷诺数小于约30时圆形颗粒的摩擦系数和阻力系数均小于滴形颗粒,而当雷诺数大于30时情况正好相反.颗粒周围的压力分布证明了这一结论.

关键词: 格子Boltzmann方法, 虚拟区域, 滴形颗粒, 摩擦系数, 阻力系数

Abstract: We investigate numerically sedimentation of a drop-shaped particle in an infinitely vertical channel with a LB-DF/FD method. In the method, Navier-Stokes equations are solved by lattice Bohzmann method and fluid-solid interactions are handled by fictitious domain scheme. This work focuses on effects of particle shape factor on friction coefficient and drag coefficient of drop-shaped particle in Reynolds numbers ranging from 10-2 to 102. Comparison with results of a circular particle is presented. It shows that particle friction coefficient keeps constant as Reynolds number is below 1. It increases as Reynolds number increasing as Reynolds number is greater than 1. Furthermore, it shows that both friction coefficient and drag coefficient of a circular particle are smaller than those of a drop-shaped one as Reynolds number is below 30 while it is greater as Reynolds number is greater than 30. To clarify this issue a detail investigation of pressure distribution around particle is presented.

Key words: lattice Boltzmann method, fictitious domain, drop-shaped particle, frietion coefficient, drag coefncient

中图分类号: