计算物理 ›› 2021, Vol. 38 ›› Issue (6): 683-692.DOI: 10.19596/j.cnki.1001-246x.8318
收稿日期:
2020-12-14
出版日期:
2021-11-25
发布日期:
2022-04-27
通讯作者:
戴厚平
作者简介:
魏雪丹(1994-), 女, 硕士研究生, 研究方向为微分方程数值解, E-mail: xd_wei2020@163.com
基金资助:
Xuedan WEI1(), Houping DAI1,*(
), Mengjun LI1, Zhoushun ZHENG2
Received:
2020-12-14
Online:
2021-11-25
Published:
2022-04-27
Contact:
Houping DAI
摘要:
建立格子Boltzmann方法(LBM)的D1Q3演化模型,研究一类Riesz空间分数阶对流扩散方程的数值求解问题。对分数阶微积分算子中的积分项离散化处理,得到逼近的标准对流扩散方程。结合Taylor展式和Chapman-Enskog多尺度展开技术得到模型的各个方向上的平衡态分布函数,通过D1Q3演化模型正确恢复所要求解的宏观方程。数值算例验证该方法的有效性。
中图分类号:
魏雪丹, 戴厚平, 李梦军, 郑洲顺. 一维空间Riesz分数阶对流扩散方程的格子Boltzmann方法[J]. 计算物理, 2021, 38(6): 683-692.
Xuedan WEI, Houping DAI, Mengjun LI, Zhoushun ZHENG. Lattice Boltzmann Method for One-dimensional Riesz Spatial Fractional Convection-Diffusion Equations[J]. Chinese Journal of Computational Physics, 2021, 38(6): 683-692.
T | GRE | CPU/s |
0.1 | 8.360 8×10-4 | 0.12 |
0.3 | 2.485 3×10-3 | 0.18 |
0.5 | 4.089 1×10-3 | 0.23 |
0.8 | 6.427 8×10-3 | 0.31 |
1 | 7.948 4×10-3 | 0.37 |
表1 不同时间T下的GRE与CPU时间
Table 1 Global relative error and CPU at different times
T | GRE | CPU/s |
0.1 | 8.360 8×10-4 | 0.12 |
0.3 | 2.485 3×10-3 | 0.18 |
0.5 | 4.089 1×10-3 | 0.23 |
0.8 | 6.427 8×10-3 | 0.31 |
1 | 7.948 4×10-3 | 0.37 |
β | GRE |
0.1 | 8.663 6×10-4 |
0.3 | 7.875 1×10-4 |
0.5 | 7.128 5×10-4 |
0.7 | 6.365 5×10-4 |
0.9 | 5.634 8×10-4 |
表2 不同参数β下的全局相对误差
Table 2 Global relative error under different β
β | GRE |
0.1 | 8.663 6×10-4 |
0.3 | 7.875 1×10-4 |
0.5 | 7.128 5×10-4 |
0.7 | 6.365 5×10-4 |
0.9 | 5.634 8×10-4 |
T | GRE | MAE |
0.1 | 7.335 1×10-4 | 2.310 2×10-6 |
0.2 | 2.097 0×10-3 | 8.476 8×10-6 |
0.4 | 4.735 2×10-3 | 7.851 2×10-5 |
0.8 | 9.664 9×10-3 | 5.866 0×10-4 |
1.6 | 1.912 3×10-3 | 4.466 4×10-3 |
表3 不同时间T时的GRE和MAE
Table 3 Global relative error and maximum absolute error at different times
T | GRE | MAE |
0.1 | 7.335 1×10-4 | 2.310 2×10-6 |
0.2 | 2.097 0×10-3 | 8.476 8×10-6 |
0.4 | 4.735 2×10-3 | 7.851 2×10-5 |
0.8 | 9.664 9×10-3 | 5.866 0×10-4 |
1.6 | 1.912 3×10-3 | 4.466 4×10-3 |
T | α=1.1 | α=1.3 | α=1.5 | α=1.7 | α=1.9 |
0.3 | 4.116 5×10-3 | 3.663 3×10-3 | 3.228 4×10-3 | 2.833 7×10-3 | 2.473 1×10-3 |
0.5 | 7.991 0×10-3 | 7.302 7×10-3 | 6.647 7×10-3 | 6.082 1×10-3 | 5.598 3×10-3 |
0.7 | 1.121 7×10-2 | 1.025 7×10-2 | 9.347 5×10-3 | 8.553 1×10-3 | 7.865 6×10-3 |
1.0 | 1.621 8×10-2 | 1.496 0×10-2 | 1.376 4×10-2 | 1.274 9×10-2 | 1.181 5×10-2 |
表4 不同时间T和不同α下的GRE
Table 4 Global relative error at different times under different α
T | α=1.1 | α=1.3 | α=1.5 | α=1.7 | α=1.9 |
0.3 | 4.116 5×10-3 | 3.663 3×10-3 | 3.228 4×10-3 | 2.833 7×10-3 | 2.473 1×10-3 |
0.5 | 7.991 0×10-3 | 7.302 7×10-3 | 6.647 7×10-3 | 6.082 1×10-3 | 5.598 3×10-3 |
0.7 | 1.121 7×10-2 | 1.025 7×10-2 | 9.347 5×10-3 | 8.553 1×10-3 | 7.865 6×10-3 |
1.0 | 1.621 8×10-2 | 1.496 0×10-2 | 1.376 4×10-2 | 1.274 9×10-2 | 1.181 5×10-2 |
x | Exact solution | FDM[ | MAE1 | LBM | MAE2 |
0.1 | 0.000 209 659 | 0.000 204 266 | 5.392 7×10-6 | 0.000 210 859 | 1.199 9×10-6 |
0.2 | 0.000 662 626 | 0.000 662 631 | 4.437 4×10-9 | 0.000 662 956 | 3.299 6×10-7 |
0.3 | 0.001 141 478 | 0.001 146 090 | 4.612 7×10-6 | 0.001 141 360 | 1.172 2×10-7 |
0.4 | 0.001 490 910 | 0.001 498 516 | 7.606 4×10-6 | 0.001 490 588 | 3.215 6×10-7 |
0.5 | 0.001 617 740 | 0.001 626 379 | 8.638 2×10-6 | 0.001 617 361 | 3.794 3×10-7 |
表5 LBM与FDM在不同节点处的数值解与解析解
Table 5 Numerical and exact solutions of lattice Boltzmann method and finite difference method
x | Exact solution | FDM[ | MAE1 | LBM | MAE2 |
0.1 | 0.000 209 659 | 0.000 204 266 | 5.392 7×10-6 | 0.000 210 859 | 1.199 9×10-6 |
0.2 | 0.000 662 626 | 0.000 662 631 | 4.437 4×10-9 | 0.000 662 956 | 3.299 6×10-7 |
0.3 | 0.001 141 478 | 0.001 146 090 | 4.612 7×10-6 | 0.001 141 360 | 1.172 2×10-7 |
0.4 | 0.001 490 910 | 0.001 498 516 | 7.606 4×10-6 | 0.001 490 588 | 3.215 6×10-7 |
0.5 | 0.001 617 740 | 0.001 626 379 | 8.638 2×10-6 | 0.001 617 361 | 3.794 3×10-7 |
N | GRE | Order |
10 | 9.417 1×10-2 | |
20 | 2.955 3×10-2 | 1.672 0 |
40 | 7.751 9×10-3 | 1.930 7 |
80 | 1.626 4×10-3 | 2.252 9 |
160 | 2.946 1×10-4 | 2.464 8 |
表6 不同网格数N下GRE及收敛阶
Table 6 Global relative error and convergence rate on different grids
N | GRE | Order |
10 | 9.417 1×10-2 | |
20 | 2.955 3×10-2 | 1.672 0 |
40 | 7.751 9×10-3 | 1.930 7 |
80 | 1.626 4×10-3 | 2.252 9 |
160 | 2.946 1×10-4 | 2.464 8 |
δt | GRE | Order |
0.004 | 3.432 7×10-2 | |
0.002 | 1.674 7×10-2 | 1.035 4 |
0.001 | 8.114 8×10-3 | 1.045 3 |
0.000 5 | 3.911 4×10-3 | 1.052 9 |
0.000 25 | 1.910 8×10-3 | 1.033 5 |
表7 不同时间步长δt下的GRE及收敛阶
Table 7 Global relative error and convergence rate with different time steps
δt | GRE | Order |
0.004 | 3.432 7×10-2 | |
0.002 | 1.674 7×10-2 | 1.035 4 |
0.001 | 8.114 8×10-3 | 1.045 3 |
0.000 5 | 3.911 4×10-3 | 1.052 9 |
0.000 25 | 1.910 8×10-3 | 1.033 5 |
N | GRE | Order |
10 | 1.676 8×10-1 | |
30 | 1.862 9×10-2 | 2.122 4 |
50 | 6.209 5×10-3 | 2.206 8 |
70 | 2.778 8×10-3 | 2.402 7 |
90 | 1.370 1×10-3 | 2.792 9 |
表8 不同网格数N下的GRE及其收敛阶
Table 8 Error analysis and convergence rate on different grids
N | GRE | Order |
10 | 1.676 8×10-1 | |
30 | 1.862 9×10-2 | 2.122 4 |
50 | 6.209 5×10-3 | 2.206 8 |
70 | 2.778 8×10-3 | 2.402 7 |
90 | 1.370 1×10-3 | 2.792 9 |
δt | GRE | Order |
0.002 | 1.672 0×10-2 | |
0.001 | 8.247 5×10-3 | 1.017 8 |
0.000 5 | 4.063 9×10-3 | 1.021 1 |
0.000 25 | 1.990 0×10-3 | 1.030 1 |
0.000 125 | 9.590 7×10-4 | 1.053 1 |
表9 不同时间步长δt下的GRE及收敛阶
Table 9 Global relative error and convergence rate with different time steps
δt | GRE | Order |
0.002 | 1.672 0×10-2 | |
0.001 | 8.247 5×10-3 | 1.017 8 |
0.000 5 | 4.063 9×10-3 | 1.021 1 |
0.000 25 | 1.990 0×10-3 | 1.030 1 |
0.000 125 | 9.590 7×10-4 | 1.053 1 |
1 |
SAICHEV A I, ZASLAVSKY G M. Fractional kinetic equations: Solutions and applications[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 1997, 7 (4): 753- 764.
DOI |
2 |
ZASLAVSKY G M. Chaos, fractional kinetics, and anomalous transport[J]. Physics Reports, 2002, 371 (6): 461- 580.
DOI |
3 |
MEERSCHAERT M M, BENSON D A, BAEUMER B. Operator Lévy motion and multiscaling anomalous diffusion[J]. Physical Review E, 2001, 63 (2): 021112.
DOI |
4 |
YUSTE S B, ACEDO L, LINDENBERG K. Reaction front in an A+B→C reaction-subdiffusion process[J]. Physical Review E, 2004, 69 (3): 036126.
DOI |
5 |
SCALAS E, GORENFLO R, MAINARDI F. Fractional calculus and continuous-time finance[J]. Physica A: Statistical Mechanics and Its Applications, 2000, 284 (1-4): 376- 384.
DOI |
6 |
RABERTO M, SCALAS E, MAINARDI F. Waiting-times and returns in high-frequency financial data: An empirical study[J]. Physica A: Statistical Mechanics and Its Applications, 2002, 314 (1-4): 749- 755.
DOI |
7 |
LIU F, ANH V, TURNER I. Numerical solution of the space fractional Fokker-Planck equation[J]. Journal of Computational and Applied Mathematics, 2004, 166 (1): 209- 219.
DOI |
8 |
MOMANI S, ODIBAT Z. Numerical solutions of the space-time fractional advection-dispersion equation[J]. Numerical Methods for Partial Differential Equations: An International Journal, 2008, 24 (6): 1416- 1429.
DOI |
9 |
MEERSCHAERT M M, TADJERAN C. Finite difference approximations for fractional advection-dispersion flow equations[J]. Journal of Computational and Applied Mathematics, 2004, 172 (1): 65- 77.
DOI |
10 |
LIU Q, LIU F, TURNER I. Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method[J]. Journal of Computational Physics, 2007, 222 (1): 57- 70.
DOI |
11 |
ZHUANG P, LIU F, ANH V. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term[J]. SIAM Journal on Numerical Analysis, 2009, 47 (3): 1760- 1781.
DOI |
12 | 曾宝思, 尹修草, 谢常平, 等. 带Robin边界条件的分数阶对流-扩散方程的数值解法[J]. 四川大学学报(自然科学版), 2018, 55 (1): 13- 17. |
13 |
YANG Q, LIU F, TURNER I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives[J]. Applied Mathematical Modelling, 2010, 34 (1): 200- 218.
DOI |
14 | 陈传军, 赵鑫. 一类非线性对流扩散方程两重网格特征有限元方法及误差估计[J]. 数学物理学报, 2014, 34 (3): 643- 654. |
15 | ZHU X, NIE Y, WANG J. A characteristic finite element method for fractional convection-diffusion equations[J]. Chinese Journal of Computational Physics, 2017, 34 (4): 417- 424. |
16 |
CARELLA A R L, DORAO C A. Least-squares spectral method for the solution of a fractional advection-dispersion equation[J]. Journal of Computational Physics, 2013, 232 (1): 33- 45.
DOI |
17 | ZHENG Z, LIU Z, GENG T. A fractional model of metal fiber sintering process[J]. Chinese Journal of Computational Physics, 2019, 36 (5): 595- 602. |
18 | JU L, ZHANG C, CHEN S. Lattice Boltzmann study on displacement process of thermal miscible fluids in porous media[J]. Chinese Journal of Computational Physics, 2019, 36 (6): 648- 658. |
19 |
WALTHER E, BENNACER R, DE CAROLINE S. Lattice Boltzmann method and diffusion in materials with large diffusivity ratios[J]. Thermal Science, 2017, 21 (3): 1173- 1182.
DOI |
20 | 刘艳红, 闫广武. 某些电磁波传播问题的格子Boltzmann模拟[J]. 吉林大学学报(理学版), 2019, 57 (2): 271- 276. |
21 |
LAI H, MA C. Lattice Boltzmann method for the generalized Kuramoto-Sivashinsky equation[J]. Physica A: Statistical Mechanics and Its Applications, 2009, 388 (8): 1405- 1412.
DOI |
22 |
CHAI Z, SHI B, GUO Z. A multiple-relaxation-time lattice Boltzmann model for general nonlinear anisotropic convection-diffusion equations[J]. Journal of Scientific Computing, 2016, 69 (1): 355- 390.
DOI |
23 |
CHAI Z, HE N, GUO Z, et al. Lattice Boltzmann model for high-order nonlinear partial differential equations[J]. Physical Review E, 2018, 97 (1): 013304.
DOI |
24 | CHAI Z, SHI B. Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: Modeling, analysis, and elements[J]. Physical Review E, 2020, 102 (2): 023306. |
25 |
DU R, SUN D, SHI B, et al. Lattice Boltzmann model for time sub-diffusion equation in Caputo sense[J]. Applied Mathematics and Computation, 2019, 358, 80- 90.
DOI |
26 |
DU R, LIU Z. A lattice Boltzmann model for the fractional advection-diffusion equation coupled with incompressible Navier-Stokes equation[J]. Applied Mathematics Letters, 2020, 101, 106074.
DOI |
27 |
LIANG H, ZHANG C, DU R, et al. Lattice Boltzmann method for fractional Cahn-Hilliard equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 91, 105443.
DOI |
28 |
DELLACHERIE S. Construction and analysis of lattice Boltzmann methods applied to a 1D convection-diffusion equation[J]. Acta Applicandae Mathematicae, 2014, 131 (1): 69- 140.
DOI |
29 | 戴厚平, 郑洲顺, 段丹丹. 变系数反应扩散方程的格子Boltzmann模型[J]. 云南大学学报(自然科学版), 2016, 38 (4): 524- 529. |
30 |
ZHOU J G, HAYGARTH P M, WITHERS P J A. Lattice Boltzmann method for the fractional advection-diffusion equation[J]. Physical Review E, 2016, 93 (4): 043310.
DOI |
31 | LI X, ZHAO Y, HU Z, et al. Investigation of normal shock structure by using Navier-Stokes equations with the second viscosity[J]. Chinese Journal of Computational Physics, 2020, 37 (5): 505- 513. |
32 | 易倩. 分数阶对流方程及相关问题的有限差分方法[D]. 上海: 上海大学, 2019. |
[1] | 冯舒婷, 戴厚平, 宋通政. 二维空间分数阶反应扩散方程组的格子Boltzmann方法[J]. 计算物理, 2022, 39(6): 666-676. |
[2] | 刘嘉鑫, 郑林, 张贝豪. 多孔介质方腔内双扩散自然对流熵产的格子Boltzmann模拟[J]. 计算物理, 2022, 39(5): 549-563. |
[3] | 林品亮, 冯欢欢, 董宇红. 具有多孔介质覆面层的柱体绕流流场分析[J]. 计算物理, 2022, 39(4): 418-426. |
[4] | 张巧玲, 景何仿. 三维曲面腔顶盖驱动流的MRT-LBM研究[J]. 计算物理, 2022, 39(4): 427-439. |
[5] | 陈露, 高明, 梁佳, 王东民, 赵玉刚, 章立新. 润湿梯度作用下液滴在倾斜表面向上运动的格子Boltzmann模拟[J]. 计算物理, 2021, 38(6): 672-682. |
[6] | 娄钦, 汤升, 王浩原. 基于格子Boltzmann大密度比模型的多孔介质内气泡动力学行为数值模拟[J]. 计算物理, 2021, 38(3): 289-300. |
[7] | 梁佳, 高明, 陈露, 王东民, 章立新. 液滴撞击不同湿润性固壁面上静止液滴的格子Boltzmann研究[J]. 计算物理, 2021, 38(3): 313-323. |
[8] | 袁俊杰, 叶欣, 单彦广. 格子Boltzmann方法模拟填充纳米流体三角形腔内的自然对流[J]. 计算物理, 2021, 38(1): 57-68. |
[9] | 王坚毅, 潘振海, 吴慧英. 微通道内椭球颗粒惯性聚焦行为数值研究[J]. 计算物理, 2020, 37(6): 677-686. |
[10] | 唐古月, 娄钦, 李凌. 格子Boltzmann方法分析加热尺寸和瑞利数对可变形开口腔内自然对流的影响[J]. 计算物理, 2020, 37(3): 263-276. |
[11] | 胡玉, 孙涛. 三维格子Boltzmann方法研究上升双气泡的运动特性[J]. 计算物理, 2020, 37(3): 277-283. |
[12] | 居隆, 张春华, 陈松泽, 郭照立. 多孔介质中非等温互溶流体驱替过程的格子Boltzmann研究[J]. 计算物理, 2019, 36(6): 648-658. |
[13] | 孙涛, 刘志斌, 范伟, 秦海杰. 过热液体中蒸汽泡上升过程的格子Boltzmann三维数值模拟[J]. 计算物理, 2019, 36(6): 659-664. |
[14] | 穆知雨, 刘振宇, 吴慧英. 微尺度稀薄效应下颗粒沉降的格子Boltzmann方法模拟[J]. 计算物理, 2019, 36(4): 395-402. |
[15] | 娄钦, 臧晨强, 王浩原, 李凌. 微通道内不混溶气液两相二氧化碳界面动力学行为的格子Boltzmann研究[J]. 计算物理, 2019, 36(2): 153-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发