Chinese Journal of Computational Physics ›› 2023, Vol. 40 ›› Issue (6): 761-769.DOI: 10.19596/j.cnki.1001-246x.8670
Previous Articles Next Articles
Received:
2022-11-24
Online:
2023-11-25
Published:
2024-01-22
Contact:
Liang XU
CLC Number:
Ziyan LIU, Liang XU. Neural Network Models of Compressible Multi-Medium Flows Embedded with Physical Constraints[J]. Chinese Journal of Computational Physics, 2023, 40(6): 761-769.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8670
Fig.6 The PGFM results based on neural network models with standard PGFM results and exact solutions (a) velocity solution and its local magnification; (b) pressure solution and its local magnification; (c)density solution and its local magnification
1 | 刘铁钢, 许亮. 模拟多介质界面问题的虚拟流体方法综述[J]. 气体物理, 2019, 4 (2): 1- 16. |
2 |
JENNY P , MULLER B , THOMANN H . Correction of conservative Euler solvers for gas mixtures[J]. Journal of Computational Physics, 1997, 132 (1): 91- 107.
DOI |
3 | LI Z , YANG N . A VOF-LPT coupling method for simulating jet atomization[J]. Chinese Journal of Computational Physics, 2022, 39 (4): 440- 452. |
4 |
COCCHI J , SAUREL R . A Riemann problem based method for the resolution of compressible multi-material flows[J]. Journal of Computational Physics, 1997, 137 (2): 265- 298.
DOI |
5 |
LIU T , KHOO B C , YEO K S . Ghost fluid method for strong shock impacting on material interface[J]. Journal of Computational Physics, 2003, 190 (2): 651- 681.
DOI |
6 |
XU L , FENG C , LIU T . Practical techniques in ghost fluid method for compressible multi-medium flows[J]. Communications in Computational Physics, 2016, 20 (3): 619- 659.
DOI |
7 | XU L , FENG C , LIU T . Design principles of ghost fluid method[J]. Chinese Journal of Computational Physics, 2016, 33 (6): 671- 680. |
8 | XU L , LIU T . Explicit interface treatments for compressible gas-liquid simulations[J]. Computers & Fluids, 2017, 153, 34- 48. |
9 |
XU L , YANG W , LIU T . An interface treatment for two-material multi-species flows involving thermally perfect gases with chemical reactions[J]. Journal of Computational Physics, 2022, 448, 110707.
DOI |
10 | RAY D , HESTHAVEN J S . An artificial neural network as a troubled-cell indicator[J]. Journal of Computational Physics, 2017, 367, 166- 191. |
11 |
FENG Y , LIU T , WANG K . A characteristic-featured shock wave indicator for conservation laws based on training an artificial neuron[J]. Journal of Scientific Computing, 2020, 83 (1): 1- 34.
DOI |
12 |
FENG Y , LIU T . A characteristic-featured shock wave indicator on unstructured grids based on training an artificial neuron[J]. Journal of Computational Physics, 2021, 443, 110446.
DOI |
13 | LIANG W , SANG J , TIAN H , et al. Flow characteristic analysis of pipe flow and turbulence model coefficient correction based on data-driven[J]. Chinese Journal of Computational Physics, 2023, 40 (1): 57- 66. |
14 | MAGIERA J , RAY D , HESTHAVEN J S , et al. Constraint-aware neural networks for Riemann problems[J]. Journal of Computational Physics, 2020, 409, 109345. |
15 | 丘润荻, 王静竹, 黄仁芳, 等. 改进的物理融合神经网络在瑞利-泰勒不稳定性问题中的应用[J]. 力学学报, 2022, 54 (8): 2224- 2234. |
16 | TORO E F . Riemann solvers and numerical methods for fluid dynamics[M]. Berlin: Springer Berlin Heidelberg, 2013: 151- 162. |
17 | CORALIC V , COLONIUS T . Finite-volume WENO scheme for viscous compressible multicomponent flows[J]. Journal of Computational Physics, 2014, 274, 95- 121. |
[1] | Lijun LIU, Duqu WEI. Synchronization of Memristive Rulkov Neural Networks [J]. Chinese Journal of Computational Physics, 2023, 40(3): 389-400. |
[2] | Weiguang LIANG, Jianbing SANG, Hongyan TIAN, Wenjie DUAN, Yaping TAO, Fengtao LI. Flow Characteristic Analysis of Pipe Flow and Turbulence Model Coefficient Correction Based on Data-driven [J]. Chinese Journal of Computational Physics, 2023, 40(1): 57-66. |
[3] | Liang SUN, Jia LUO, Yinhu QIAO. Initial Offset Boosting Dynamics in A Memristive Hopfield Neural Network and Its Application in Image Encryption [J]. Chinese Journal of Computational Physics, 2023, 40(1): 106-116. |
[4] | Guozheng WU, Fajie WANG, Suifu CHENG, Chengxin ZHANG. Numerical Simulation of Forward and Inverse Problems of Internal Sound Field Based on Physics-informed Neural Network [J]. Chinese Journal of Computational Physics, 2022, 39(6): 687-698. |
[5] | Cong XIAO, Shicheng ZHANG, Xinfang MA, Tong ZHOU, Tengfei HOU. Model-reduced Autoregressive Neural Network for Parameter Inversion [J]. Chinese Journal of Computational Physics, 2022, 39(5): 564-578. |
[6] | Can HUANG, Leng TIAN, Heng-li WANG, Jia-xin WANG, Li-li JIANG. A Single Well Production Forecasting Model of Reservoir Based on Conditional Generative Adversarial Net [J]. Chinese Journal of Computational Physics, 2022, 39(4): 465-478. |
[7] | Jian PAN, Zhaoli GUO, Songze CHEN. A Compound Neural Network for Learning Partial Differential Equations from Noisy Data [J]. Chinese Journal of Computational Physics, 2022, 39(2): 223-232. |
[8] | Lihong TANG, Zongmei HE, Yanli YAO. Dynamical Analysis and Circuit Implementation of a Memristive Hopfield Neural Network [J]. Chinese Journal of Computational Physics, 2022, 39(2): 244-252. |
[9] | Hong LI, Lixin ZHANG, Yan REN, Ming GAO, Jingnan LIU. Prediction of Water Temperature of Mixed-flow Closed Cooling Tower Based on BP Neural Network and Grey Correlation Analysis [J]. Chinese Journal of Computational Physics, 2022, 39(1): 53-59. |
[10] | Jia LUO, Liang SUN, Yinhu QIAO. Dynamical Analysis and Circuit Implementation of a Memristor Synapse-coupled Ring Hopfield Neural Network [J]. Chinese Journal of Computational Physics, 2022, 39(1): 109-117. |
[11] | Shuyu ZHENG, Jiazhen PENG, Xianmei ZHANG, Erbing XUE, Limin YU. Prediction of Energy Confinement Time in Tokamak Based on Neural Networks [J]. Chinese Journal of Computational Physics, 2021, 38(4): 423-430. |
[12] | ZHOU Qian, WEI Duqu. Firing Activity of Memristive Neural Network Under Field Coupling [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(6): 750-756. |
[13] | LU Xinrui, HUANG Handong, LI Shuai, YIN Long. Salt-body Classification Method Based on U-Net [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(3): 327-334. |
[14] | ZHOU Yuhao, LIU Huiqing, QI Peng, ZHAO Meng, CHEN Yu. Forecast of Oil Production in Fractured-Vuggy Reservoir by Using Recurrent Neural Networks [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(6): 668-674. |
[15] | ZHOU Jie, XU Shengli. On SPH Method with Treatment of Gas-Liquid Interface Boundary Conditions [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(4): 409-416. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.