Chinese Journal of Computational Physics ›› 2024, Vol. 41 ›› Issue (6): 804-813.DOI: 10.19596/j.cnki.1001-246x.8988
• Research Article • Previous Articles Next Articles
Shaobo CHANG1(), Zewei CHEN1, Jiangeng YU2, Ziyang LIU1, Gang CHEN1,*(
)
Received:
2024-07-17
Online:
2024-11-25
Published:
2024-12-26
Contact:
Gang CHEN
Shaobo CHANG, Zewei CHEN, Jiangeng YU, Ziyang LIU, Gang CHEN. Flow Field Prediction Model Based on KAN and Dynamic Upsample[J]. Chinese Journal of Computational Physics, 2024, 41(6): 804-813.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8988
类型 | 数学表达式 |
Chebyshev Polynomials | Tn(x)=cos(ncos-1(x)) |
Gaussian RBF | |
Radial Basis Function | ϕ(x, c)=f(|x-c|) |
B-Spline |
Table 1 Activation Function
类型 | 数学表达式 |
Chebyshev Polynomials | Tn(x)=cos(ncos-1(x)) |
Gaussian RBF | |
Radial Basis Function | ϕ(x, c)=f(|x-c|) |
B-Spline |
Fig.7 CFD calculations and KADS predictions, and error map of airfoil (a)KADS, p; (b) CFD, p; (c) error between KADS and CFD (p); (d)KADS, u; (e) CFD, u; (f)error between KADS and CFD (u); (g)KADS, v; (h)CFD, v; (i)error between KADS and CFD (v)
1 |
GUO Xiaoxiao, LI Wei, IORIO F. Convolutional neural networks for steady flow approximation[C]//proceedings of the Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA: Association for Computing Machinery, 2016: 481-490.
|
2 |
DOI |
3 |
RIBEIRO M D, REHMAN A, AHMED S, et al. DeepCFD: Efficient steady-state laminar flow approximation with deep convolutional neural networks[DB/OL]. arXiv, 2020(2020-05-19). https://arxiv.org/abs/2004.08826.
|
4 |
DOI |
5 |
DOI |
6 |
DOI |
7 |
|
8 |
LIU Wenze, LU Hao, FU Hongtao, et al. Learning to upsample by learning to sample[C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV). Paris, France: IEEE, 2023: 6004-6014.
|
9 |
朱智杰, 赵国庆, 高远, 等. 基于UNet的翼型可压缩流场机器学习推理方法[J]. 南京航空航天大学学报, 2024, 56 (2): 253- 263.
|
10 |
GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Chia Laguna Resort, Sardinia, Italy: PMLR, 2010: 249-256.
|
11 |
QIU Qi, ZHU Tao, GONG Helin, et al. ReLU-KAN: New kolmogorov-arnold networks that only need matrix addition, dot multiplication, and ReLU[DB/OL]. arXiv, 2024(2024-08-12). https://arxiv.org/abs/2406.02075.
|
[1] | Jiawei GUO, Han WANG, Tongxiang GU. Machine Learning Methods for Solving Evolution Equation [J]. Chinese Journal of Computational Physics, 2024, 41(6): 772-782. |
[2] | Zhengya GAO, Zhiping MAO. Active Learning Algorithm Using Neural Operator Networks and Bayesian Neural Networks: Learning Macroscale Models for Collective Behavior from Microscale Data [J]. Chinese Journal of Computational Physics, 2024, 41(6): 783-796. |
[3] | Wenmin HAN, Yaodong DAI, Chuqing YAO, Jiaxiang TIAN, Danfeng JIANG, Yifan ZHOU. Application of Genetic Algorithm to Optimal Design of Shielding Materials for Neutron-γ Mixed Radiation Fields [J]. Chinese Journal of Computational Physics, 2024, 41(3): 357-366. |
[4] | Ziyan LIU, Liang XU. Neural Network Models of Compressible Multi-Medium Flows Embedded with Physical Constraints [J]. Chinese Journal of Computational Physics, 2023, 40(6): 761-769. |
[5] | Lijun LIU, Duqu WEI. Synchronization of Memristive Rulkov Neural Networks [J]. Chinese Journal of Computational Physics, 2023, 40(3): 389-400. |
[6] | Weiguang LIANG, Jianbing SANG, Hongyan TIAN, Wenjie DUAN, Yaping TAO, Fengtao LI. Flow Characteristic Analysis of Pipe Flow and Turbulence Model Coefficient Correction Based on Data-driven [J]. Chinese Journal of Computational Physics, 2023, 40(1): 57-66. |
[7] | Liang SUN, Jia LUO, Yinhu QIAO. Initial Offset Boosting Dynamics in A Memristive Hopfield Neural Network and Its Application in Image Encryption [J]. Chinese Journal of Computational Physics, 2023, 40(1): 106-116. |
[8] | Guozheng WU, Fajie WANG, Suifu CHENG, Chengxin ZHANG. Numerical Simulation of Forward and Inverse Problems of Internal Sound Field Based on Physics-informed Neural Network [J]. Chinese Journal of Computational Physics, 2022, 39(6): 687-698. |
[9] | Cong XIAO, Shicheng ZHANG, Xinfang MA, Tong ZHOU, Tengfei HOU. Model-reduced Autoregressive Neural Network for Parameter Inversion [J]. Chinese Journal of Computational Physics, 2022, 39(5): 564-578. |
[10] | Can HUANG, Leng TIAN, Heng-li WANG, Jia-xin WANG, Li-li JIANG. A Single Well Production Forecasting Model of Reservoir Based on Conditional Generative Adversarial Net [J]. Chinese Journal of Computational Physics, 2022, 39(4): 465-478. |
[11] | Jian PAN, Zhaoli GUO, Songze CHEN. A Compound Neural Network for Learning Partial Differential Equations from Noisy Data [J]. Chinese Journal of Computational Physics, 2022, 39(2): 223-232. |
[12] | Lihong TANG, Zongmei HE, Yanli YAO. Dynamical Analysis and Circuit Implementation of a Memristive Hopfield Neural Network [J]. Chinese Journal of Computational Physics, 2022, 39(2): 244-252. |
[13] | Hong LI, Lixin ZHANG, Yan REN, Ming GAO, Jingnan LIU. Prediction of Water Temperature of Mixed-flow Closed Cooling Tower Based on BP Neural Network and Grey Correlation Analysis [J]. Chinese Journal of Computational Physics, 2022, 39(1): 53-59. |
[14] | Jia LUO, Liang SUN, Yinhu QIAO. Dynamical Analysis and Circuit Implementation of a Memristor Synapse-coupled Ring Hopfield Neural Network [J]. Chinese Journal of Computational Physics, 2022, 39(1): 109-117. |
[15] | Shuyu ZHENG, Jiazhen PENG, Xianmei ZHANG, Erbing XUE, Limin YU. Prediction of Energy Confinement Time in Tokamak Based on Neural Networks [J]. Chinese Journal of Computational Physics, 2021, 38(4): 423-430. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.