[1] FURMAN K C, SAHINIDIS N V. A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century[J]. Industrial & Engineering Chemistry Research, 2002, 41(10):2335-2370. [2] LINNHOFF B, HINDMARSH E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5):745-763. [3] AZAD A V, GHAEBI H, AMIDPOUR M. Novel graphical approach as fouling pinch for increasing fouling formation period in heat exchanger network (HEN) state of the art[J]. Energy Conversion & Management, 2011, 52(1):117-124. [4] YEE T F, GROSSMANN I E, KRAVANJA Z. Simultaneous optimization models for heat integration III:Process and heat exchanger network optimization[J]. Computers & Chemical Engineering, 1990, 14(10):1151-1164. [5] 张勤, 崔国民, 关欣. 换热网络的棋盘模型及其算法[C]. 中国工程热物理学会年会, 2005. [6] PARIYANI A, GUPTA A, GHOSH P. Design of heat exchanger networks using randomized algorithm[J]. Computers & Chemical Engineering, 2006, 30(6/7):1046-1053. [7] 彭富裕, 崔国民, 陈上, 等. 基于改进的SWS模型的换热网络优化研究[J]. 工程热物理学报, 2016, 37(9):1973-1983. [8] FURMAN K C, SAHINIDIS N V. Computational complexity of heat exchanger network synthesis[J]. Computers & Chemical Engineering, 2001, 25(9):1371-1390. [9] CHOI S H, MANOUSIOUTHAKIS V. Global optimization methods for chemical process design:Deterministic and stochastic approaches[J]. Korean Journal of Chemical Engineering, 2002, 19(2):227-232. [10] QUESADA I, GROSSMANN I E. An LP/NLP based branch and bound algorithm for convex MINLP optimization problems[J]. Computers & Chemical Engineering, 1992, 16(10-11):937-947. [11] VISWANATHAN J, GROSSMANN I E. A combined penalty function and outer-approximation method for MINLP optimization[J]. Computers & Chemical Engineering, 1990, 14(7):769-782. [12] RAVAGNANI M A S S, SILVA A P, ARROYO P A, et al. Heat exchanger network synthesis and optimisation using genetic algorithm[J]. Applied Thermal Engineering, 2005, 25(7):1003-1017. [13] SILVA A P, RAVAGNANI M A S S, BISCAIA E C, et al. Optimal heat exchanger network synthesis usingparticle swarm optimization[J]. Optimization & Engineering, 2010, 11(3):459-470. [14] YERRAMSETTY K M, MURTY C V S. Synthesis of cost-optimal heat exchanger networks using differential evolution[J]. Computers and Chemical Engineering, 2008, 32(8):1861-1876. [15] CHEN S, CUI G, ZHANG C, et al. Optimization of heat integration in dynamic multi-agent differential evolution algorithm[J]. Chinese Journal of Computational Physics, 2016,33(3):349-357. [16] ZHANG C, CUI G, CHEN S. An improved chaotic ant swarm algorithm for simultaneous synthesis of heat exchanger network[J]. Chinese Journal of Computational Physics, 2017, 34(2):193-204. [17] ZHU Y, CUI G, XIAO Y, et al. A random walk algorithm with compulsive evolution combined with restrictive-evolution strategy for heat unit in heat exchanger network synthesis[J]. Chinese Journal of Computational Physics, 2017, 34(5):593-602. [18] 肖媛, 崔国民, 李帅龙. 一种新的用于换热网络全局优化的强制进化随机游走算法[J]. 化工学报, 2016, 67(12):5140-5147. [19] CHEN S, CUI G M. Uniformity factor of temperature difference in heat exchanger networks[J]. Applied Thermal Engineering, 2016, 102:1366-1373. [20] 张红亮, 崔国民, 朱玉双, 等. 特殊换热网络算例优化与分析[J]. 化工进展, 2018, 37(5):1692-1701. [21] KHORASANY R M, FESANGHARY M. A novel approach for synthesis of cost-optimal heat exchanger networks[J]. Computers & Chemical Engineering, 2009, 33(8):1363-1370. [22] XIAO W, DONG H, LI X, et al. Synthesis of large-scale multistream heat exchanger networks based on stream pseudo temperature[J]. Chinese Journal of Chemical Engineering, 2006, 14(5):574-583. [23] LAUKKANEN T, FOGELHOLM C J. A bilevel optimization method for simultaneous synthesis of medium-scale heat exchanger networks based on grouping of process streams[J]. Computers & Chemical Engineering, 2011, 35(11):2389-2400. [24] LUO X, WEN Q Y, FIEG G. A hybrid genetic algorithm for synthesis of heat exchanger networks[J]. Computers & Chemical Engineering, 2009, 33(6):1169-1181. [25] LAUKKANEN T, TVEIT T M, OJALEHTO V, et al. Bilevel heat exchanger network synthesis with an interactive multi-objective optimization method[J]. Applied Thermal Engineering, 2012, 48(26):301-316. [26] ZHANG C, CUI G, PENG F. A novel hybrid chaotic ant swarm algorithm for heat exchanger networks synthesis[J]. Applied Thermal Engineering, 2016, 104:707-719. [27] HUO Z, ZHAO L, YIN H, et al. Simultaneous synthesis of structural-constrained heat exchanger networks with and without stream splits[J]. Canadian Journal of Chemical Engineering, 2013, 91(5):830-842. [28] PAVÃO L V, COSTA C B B, RAVAGNANI M A S S. Heat exchanger network synthesis without stream splits using parallelized and simplified simulated annealing and particle swarm optimization[J]. Chemical Engineering Science, 2017, 158:96-107. [29] BAO Z, CUI G, CHEN J, et al. A novel random walk algorithm with compulsive evolution combined with an optimum-protection strategy for heat exchanger network synthesis[J]. Energy, 2018, 152. [30] CHEN J, CUI G, DUAN H. Multipopulation differential evolution algorithm based on the opposition-based learning for heat exchanger network synthesis[J]. Numerical Heat Transfer Part A:Applications, 2017, 72(2):126-140.Received date:2019-03-11; Revised date:2019-05-30 |