计算物理 ›› 2024, Vol. 41 ›› Issue (3): 392-402.DOI: 10.19596/j.cnki.1001-246x.8703
• • 上一篇
潘磊1,2(), 崔国民1,2,*(
), 张瑞芳1,2, 刘洪彬1,2, 肖媛1,2, 易智康1,2
收稿日期:
2023-02-10
出版日期:
2024-05-25
发布日期:
2024-05-25
通讯作者:
崔国民
作者简介:
潘磊(1999-), 男, 硕士研究生, 研究方向为新能源系统集成, E-mail: 897756876@qq.com
基金资助:
Lei PAN1,2(), Guomin CUI1,2,*(
), Ruifang ZHANG1,2, Hongbin LIU1,2, Yuan XIAO1,2, Zhikang YI1,2
Received:
2023-02-10
Online:
2024-05-25
Published:
2024-05-25
Contact:
Guomin CUI
摘要:
针对独立型微电网配置优化问题, 建立一种以能流匹配形式描述的风-光-柴-储优化模型, 形成表示各时刻设备出力的节点连接关系。鉴于群智能算法应用于微电网优化配置问题易早熟收敛的特点, 提出适用于微电网优化配置的随机游走优化算法, 算法以降低系统年综合费用为导向, 通过随机增大或减小设备逐时出力, 实现连续变量(设备出力)和整型变量(设备数量)同步优化, 通过接受差解机制, 使算法具有跳出局部最优解的能力, 更好兼顾微电网容量优化过程中的全局搜索与局部搜索。将随机游走算法应用到算例进行仿真, 得到年综合费用为552 826.39元, 与粒子群优化算法进行对比, 结果更好, 验证了算法在优化质量上的优越性。
中图分类号:
潘磊, 崔国民, 张瑞芳, 刘洪彬, 肖媛, 易智康. 一种微电网优化配置的随机游走算法[J]. 计算物理, 2024, 41(3): 392-402.
Lei PAN, Guomin CUI, Ruifang ZHANG, Hongbin LIU, Yuan XIAO, Zhikang YI. A Novel Random Walk Algorithm for Optimal Configuration of Micro-grid[J]. Chinese Journal of Computational Physics, 2024, 41(3): 392-402.
图2 不同工况节点连接关系局部(a) 工况1; (b) 工况2; (c) 工况3; (d) 工况4
Fig.2 Local diagram of connection relation of nodes under different working conditions (a) working condition 1; (b) working condition 2; (c) working condition 3; (d) working condition 4
图4 全年(a)风速、(b)光照强度、(c)气温以及(d)典型日用电负荷(气象数据来自NASA全球大气科学数据中心)
Fig.4 (a) Annual wind speed, (b) year-round light light intensity, (c) annual temperature and (d) typical daily electricity load (meteorological data from NASA Global Data Center for Atmospheric Sciences)
设备 | 规格 | 购买成本/(CNY·W-1) | 运行费用/(CNY·(kW·h)-1) | 运行年限/yr |
光伏 | 250 W | 5 | 0.009 6 | 20 |
风机 | 10 kW | 4 | 0.029 6 | 20 |
柴油发电机 | 10 kW | 2.1 | 0.021 0 | 20 |
储能电池 | 12 V,150 Ah | 1.2 | 0.083 2 | 13.5 |
表1 各设备参数
Table 1 Parameters of each device
设备 | 规格 | 购买成本/(CNY·W-1) | 运行费用/(CNY·(kW·h)-1) | 运行年限/yr |
光伏 | 250 W | 5 | 0.009 6 | 20 |
风机 | 10 kW | 4 | 0.029 6 | 20 |
柴油发电机 | 10 kW | 2.1 | 0.021 0 | 20 |
储能电池 | 12 V,150 Ah | 1.2 | 0.083 2 | 13.5 |
污染物类型 | 治理成本/(CNY·kg-1) | 污染物排放系数/(g·(kW·h)-1) |
CO2 | 0.210 | 649 |
SO2 | 14.842 | 0.206 |
NOx | 62.964 | 9.890 |
表2 柴油机污染物治理成本
Table 2 Pollutant control cost of diesel engine
污染物类型 | 治理成本/(CNY·kg-1) | 污染物排放系数/(g·(kW·h)-1) |
CO2 | 0.210 | 649 |
SO2 | 14.842 | 0.206 |
NOx | 62.964 | 9.890 |
组合方案 | 风力发电机数量/个 | 光伏组件数量/块 | 储能电池数量/个 | 柴油发电机数量/个 | 污染物治理成本/元 | 可再生能源利用率/% | 年总成本/元 |
1 | 27 | 11 | 12 | 164 213.253 | 66.5 | 662 317.15 | |
2 | 2 146 | 12 | 14 | 176 218.496 | 54.3 | 627 862.41 | |
3 | 21 | 1 982 | 3 | 48 423.247 | 91.6 | 642 523.72 | |
4 | 11 | 1 429 | 10 | 6 | 84 466.734 | 87.4 | 552 826.39 |
表3 不同方案下电源配置优化结果
Table 3 Optimization results of power configuration in different solutions
组合方案 | 风力发电机数量/个 | 光伏组件数量/块 | 储能电池数量/个 | 柴油发电机数量/个 | 污染物治理成本/元 | 可再生能源利用率/% | 年总成本/元 |
1 | 27 | 11 | 12 | 164 213.253 | 66.5 | 662 317.15 | |
2 | 2 146 | 12 | 14 | 176 218.496 | 54.3 | 627 862.41 | |
3 | 21 | 1 982 | 3 | 48 423.247 | 91.6 | 642 523.72 | |
4 | 11 | 1 429 | 10 | 6 | 84 466.734 | 87.4 | 552 826.39 |
![]() | PSO/元 | RWCE/元 |
平均值 | 619 086.25 | 560 289.33 |
最小值 | 604 481.64 | 552 826.39 |
标准差 | 2 652.65 | 1 414.21 |
表4 两种算法统计结果
Table 4 Statistical results of the two algorithms
![]() | PSO/元 | RWCE/元 |
平均值 | 619 086.25 | 560 289.33 |
最小值 | 604 481.64 | 552 826.39 |
标准差 | 2 652.65 | 1 414.21 |
算法 | 风力发电机数量/个 | 光伏组件数量/块 | 储能电池数量/个 | 柴油发电机数量/个 | 污染物治理成本/元 | 年总成本/元 |
PSO | 13 | 1 306 | 8 | 9 | 115 874.642 2 | 604 481.64 |
RWCE | 11 | 1 429 | 10 | 6 | 84 466.734 | 552 826.39 |
表5 两种算法下各设备配置结果最小值
Table 5 The minimum configuration result of each device under the two algorithms
算法 | 风力发电机数量/个 | 光伏组件数量/块 | 储能电池数量/个 | 柴油发电机数量/个 | 污染物治理成本/元 | 年总成本/元 |
PSO | 13 | 1 306 | 8 | 9 | 115 874.642 2 | 604 481.64 |
RWCE | 11 | 1 429 | 10 | 6 | 84 466.734 | 552 826.39 |
时间 | 风速/(m·s-1) | 光强/(kW·m-2) | 气温/(℃) | 负荷/(kW) | 时间 | 风速/(m·s-1) | 光照强度/(kW·m-2) | 气温/(℃) | 负荷/(kW) | |
1:00 | 4.87 | 0 | 27.93 | 184.34 | 13:00 | 8.72 | 693.24 | 33.13 | 203.14 | |
2:00 | 5.12 | 0 | 27.72 | 168.86 | 14:00 | 8.29 | 489.76 | 32.53 | 159.37 | |
3:00 | 5.25 | 0 | 27.56 | 161.05 | 15:00 | 8.08 | 491.51 | 32.41 | 165.11 | |
4:00 | 5.35 | 0 | 27.42 | 145.65 | 16:00 | 8.25 | 411.51 | 32.18 | 170.96 | |
5:00 | 5.38 | 0 | 27.24 | 144.85 | 17:00 | 8.60 | 297.26 | 31.67 | 172.98 | |
6:00 | 5.62 | 0 | 27.09 | 137.84 | 18:00 | 8.86 | 174.69 | 30.88 | 171.43 | |
7:00 | 6.10 | 41.26 | 27.64 | 140.06 | 19:00 | 8.89 | 62.45 | 29.80 | 163.51 | |
8:00 | 6.75 | 177.57 | 28.84 | 176.74 | 20:00 | 8.96 | 1.95 | 28.64 | 161.31 | |
9:00 | 8.19 | 346.38 | 30.04 | 171.72 | 21:00 | 9.33 | 0 | 28.29 | 186.36 | |
10:00 | 9.15 | 522.24 | 31.27 | 176.49 | 22:00 | 9.56 | 0 | 28.14 | 190.24 | |
11:00 | 9.45 | 662.24 | 32.29 | 203.48 | 23:00 | 9.77 | 0 | 28.04 | 186.23 | |
12:00 | 9.18 | 738.24 | 32.94 | 210.63 | 24:00 | 9.76 | 0 | 27.94 | 181.94 |
表附录A 夏季典型日气象及负荷数据
Table 附录A Mateorological and load data of typical summer day
时间 | 风速/(m·s-1) | 光强/(kW·m-2) | 气温/(℃) | 负荷/(kW) | 时间 | 风速/(m·s-1) | 光照强度/(kW·m-2) | 气温/(℃) | 负荷/(kW) | |
1:00 | 4.87 | 0 | 27.93 | 184.34 | 13:00 | 8.72 | 693.24 | 33.13 | 203.14 | |
2:00 | 5.12 | 0 | 27.72 | 168.86 | 14:00 | 8.29 | 489.76 | 32.53 | 159.37 | |
3:00 | 5.25 | 0 | 27.56 | 161.05 | 15:00 | 8.08 | 491.51 | 32.41 | 165.11 | |
4:00 | 5.35 | 0 | 27.42 | 145.65 | 16:00 | 8.25 | 411.51 | 32.18 | 170.96 | |
5:00 | 5.38 | 0 | 27.24 | 144.85 | 17:00 | 8.60 | 297.26 | 31.67 | 172.98 | |
6:00 | 5.62 | 0 | 27.09 | 137.84 | 18:00 | 8.86 | 174.69 | 30.88 | 171.43 | |
7:00 | 6.10 | 41.26 | 27.64 | 140.06 | 19:00 | 8.89 | 62.45 | 29.80 | 163.51 | |
8:00 | 6.75 | 177.57 | 28.84 | 176.74 | 20:00 | 8.96 | 1.95 | 28.64 | 161.31 | |
9:00 | 8.19 | 346.38 | 30.04 | 171.72 | 21:00 | 9.33 | 0 | 28.29 | 186.36 | |
10:00 | 9.15 | 522.24 | 31.27 | 176.49 | 22:00 | 9.56 | 0 | 28.14 | 190.24 | |
11:00 | 9.45 | 662.24 | 32.29 | 203.48 | 23:00 | 9.77 | 0 | 28.04 | 186.23 | |
12:00 | 9.18 | 738.24 | 32.94 | 210.63 | 24:00 | 9.76 | 0 | 27.94 | 181.94 |
时间 | 风速/(m·s-1) | 光照强度/(kW·m-2) | 气温/(℃) | 负荷/(kW) | 时间 | 风速/(m·s-1) | 光照强度/(kW·m-2) | 气温/(℃) | 负荷/(kW) | |
1:00 | 9.56 | 0 | 17.70 | 119.40 | 13:00 | 8.29 | 814.50 | 20.39 | 150.58 | |
2:00 | 9.71 | 0 | 17.06 | 106.00 | 14:00 | 7.96 | 792.49 | 21.20 | 148.18 | |
3:00 | 9.83 | 0 | 16.08 | 102.09 | 15:00 | 7.73 | 700.24 | 21.60 | 145.73 | |
4:00 | 9.61 | 0 | 15.36 | 96.41 | 16:00 | 7.52 | 542.49 | 21.47 | 145.79 | |
5:00 | 9.49 | 0 | 14.99 | 95.63 | 17:00 | 7.09 | 338.25 | 20.83 | 121.46 | |
6:00 | 9.32 | 0 | 14.60 | 98.24 | 18:00 | 5.54 | 120.60 | 19.34 | 131.43 | |
7:00 | 8.99 | 0 | 14.24 | 102.34 | 19:00 | 4.45 | 2.38 | 17.21 | 133.13 | |
8:00 | 8.64 | 38.72 | 14.26 | 108.50 | 20:00 | 4.56 | 0 | 16.53 | 136.67 | |
9:00 | 9.04 | 212.50 | 15.03 | 125.51 | 21:00 | 4.79 | 0 | 16.08 | 138.56 | |
10:00 | 9.33 | 436.13 | 16.16 | 158.02 | 22:00 | 5.04 | 0 | 15.57 | 134.77 | |
11:00 | 9.05 | 626.73 | 17.72 | 155.76 | 23:00 | 5.38 | 0 | 15.08 | 132.72 | |
12:00 | 8.67 | 761.24 | 19.26 | 153.17 | 24:00 | 5.78 | 0 | 14.55 | 126.56 |
表附录B 冬季典型日气象及负荷数据
Table 附录B Mateorological and load data of typical winter day
时间 | 风速/(m·s-1) | 光照强度/(kW·m-2) | 气温/(℃) | 负荷/(kW) | 时间 | 风速/(m·s-1) | 光照强度/(kW·m-2) | 气温/(℃) | 负荷/(kW) | |
1:00 | 9.56 | 0 | 17.70 | 119.40 | 13:00 | 8.29 | 814.50 | 20.39 | 150.58 | |
2:00 | 9.71 | 0 | 17.06 | 106.00 | 14:00 | 7.96 | 792.49 | 21.20 | 148.18 | |
3:00 | 9.83 | 0 | 16.08 | 102.09 | 15:00 | 7.73 | 700.24 | 21.60 | 145.73 | |
4:00 | 9.61 | 0 | 15.36 | 96.41 | 16:00 | 7.52 | 542.49 | 21.47 | 145.79 | |
5:00 | 9.49 | 0 | 14.99 | 95.63 | 17:00 | 7.09 | 338.25 | 20.83 | 121.46 | |
6:00 | 9.32 | 0 | 14.60 | 98.24 | 18:00 | 5.54 | 120.60 | 19.34 | 131.43 | |
7:00 | 8.99 | 0 | 14.24 | 102.34 | 19:00 | 4.45 | 2.38 | 17.21 | 133.13 | |
8:00 | 8.64 | 38.72 | 14.26 | 108.50 | 20:00 | 4.56 | 0 | 16.53 | 136.67 | |
9:00 | 9.04 | 212.50 | 15.03 | 125.51 | 21:00 | 4.79 | 0 | 16.08 | 138.56 | |
10:00 | 9.33 | 436.13 | 16.16 | 158.02 | 22:00 | 5.04 | 0 | 15.57 | 134.77 | |
11:00 | 9.05 | 626.73 | 17.72 | 155.76 | 23:00 | 5.38 | 0 | 15.08 | 132.72 | |
12:00 | 8.67 | 761.24 | 19.26 | 153.17 | 24:00 | 5.78 | 0 | 14.55 | 126.56 |
1 | 赵磊, 曾芬钰, 王霜. 微电网研究综述[J]. 科技风, 2014, (9): 230. |
2 | 彭超. 我国海岛可持续发展初探[D]. 青岛: 中国海洋大学, 2006. |
3 |
吴榆俊, 钟森. 风光储微电网容量配置优化综述[J]. 电气技术与经济, 2022, (4): 23-25, 29.
DOI |
4 |
ERDINC O , UZUNOGLU M . Optimum design of hybrid renewable energy systems: Overview of different approaches[J]. Renewable and Sustainable Energy Reviews, 2012, 16 (3): 1412- 1425.
DOI |
5 |
周天沛, 孙伟. 风光互补发电系统混合储能单元的容量优化设计[J]. 太阳能学报, 2015, 36 (3): 756- 762.
DOI |
6 | 兰国军, 栗文义, 尹凯, 等. 并网运行风/光/储微电网容量配置双目标优化[J]. 电工电能新技术, 2015, 34 (3): 18- 23. |
7 |
ZHAO Jingyi , YUAN Xiaofang . Multi-objective optimization of stand-alone hybrid PV-wind-diesel-battery system using improved fruit fly optimization algorithm[J]. Soft Computing, 2016, 20 (7): 2841- 2853.
DOI |
8 | 陈天, 蔡泽祥, 谢鹏, 等. 基于改进微分进化算法的风光互补系统发电容量优化配置[J]. 电力科学与技术学报, 2017, 32 (3): 22- 28. |
9 |
TUKKEE A S , BIN ABDUL WAHAB N I , BINTI MAILAH N F . Optimal sizing of autonomous hybrid microgrids with economic analysis using grey wolf optimizer technique[J]. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 2023, 3, 100123.
DOI |
10 |
TOMIN N , SHAKIROV V , KOZLOV A , et al. Design and optimal energy management of community microgrids with flexible renewable energy sources[J]. Renewable Energy, 2022, 183, 903- 921.
DOI |
11 |
KAMAL M M , ASHRAF I , FERNANDEZ E . Optimal sizing of standalone rural microgrid for sustainable electrification with renewable energy resources[J]. Sustainable Cities and Society, 2023, 88, 104298.
DOI |
12 |
ABUNIMA H , PARK W H , GLICK M B , et al. Two-stage stochastic optimization for operating a renewable-based microgrid[J]. Applied Energy, 2022, 325, 119848.
DOI |
13 | KIZITO R , LIU Zeyu , LI Xueping , et al. Multi-stage stochastic optimization of islanded utility-microgrids design after natural disasters[J]. Operations Research Perspectives, 2022, 9, 100235. |
14 | 赵超, 王斌, 孙志新, 等. 基于改进灰狼算法的独立微电网容量优化配置[J]. 太阳能学报, 2022, 43 (1): 256- 262. |
15 | XIAO Yuan , CUI Guomin . A novel random walk algorithm with compulsive evolution for heat exchanger network synthesis[J]. Applied Thermal Engineering, 2017, 115, 1118- 1127. |
16 | 马秀宝, 盖照亮, 崔国民, 等. 基于强制进化随机游走算法的质量交换网络综合[J]. 计算物理, 2022, 39 (4): 479- 490. |
17 | 张璐, 崔国民, 刘薇薇, 等. 基于小负荷换热单元保护的松弛策略优化换热网络[J]. 计算物理, 2022, 39 (3): 352- 360. |
18 | 刘薇薇, 崔国民, 肖媛, 等. 一种采用优势个体多方向强制搜索策略的换热网络优化方法[J]. 计算物理, 2022, 39 (1): 60- 70. |
19 | 李迪, 崔国民, 陈家星, 等. 可再生能源多能互补的分布式能源系统两级超结构模型[J]. 能源研究与信息, 2021, 37 (3): 125- 133. |
20 | 朱兰, 严正, 杨秀, 等. 风光储微网系统蓄电池容量优化配置方法研究[J]. 电网技术, 2012, 36 (12): 26- 31. |
21 | 王蓓蓓. 面向智能电网的用户需求响应特性和能力研究综述[J]. 中国电机工程学报, 2014, 34 (22): 3654- 3663. |
22 | BELFKIRA R , ZHANG Lu , BARAKAT G . Optimal sizing study of hybrid wind/PV/diesel power generation unit[J]. Solar Energy, 2011, 85 (1): 100- 110. |
[1] | 金广林, 崔国民, 肖媛, 刘洪彬, 付寅瑞, 张志坤. 质量交换网络的个体重构优化方法[J]. 计算物理, 2024, 41(2): 245-257. |
[2] | 易智康, 崔国民, 周志强, 肖媛, 熊思恒, 马秀宝. 棋盘模型同步优化质量交换网络[J]. 计算物理, 2023, 40(4): 500-510. |
[3] | 马秀宝, 崔国民, 周志强, 肖媛, 徐玥, 杨其国. 带有个体淘汰的强制进化随机游走算法优化质量交换网络[J]. 计算物理, 2023, 40(3): 376-388. |
[4] | 马秀宝, 盖照亮, 崔国民, 周志强, 韩新宇, 杨其国. 基于强制进化随机游走算法的质量交换网络综合[J]. 计算物理, 2022, 39(4): 479-490. |
[5] | 韩正恒, 崔国民, 章伟杰, 赵倩倩, 肖媛, 张冠华. 基于节点非结构模型的换热网络结构多样性分析及改进优化策略[J]. 计算物理, 2021, 38(4): 479-488. |
[6] | 赵倩倩, 崔国民, 韩正恒, 肖媛, 徐玥. RWCE算法中选择性接受差解策略优化换热网络[J]. 计算物理, 2021, 38(4): 489-497. |
[7] | 金艳, 崔国民, 曹美, 沈昊, 陈子禾. 周期优势结构提炼与搜索路径强化结合提升换热网络结构进化能力[J]. 计算物理, 2020, 37(6): 725-733. |
[8] | 姜逸文, 崔国民, 鲍中凯, 刘火林, 周金佳. 一种内部公用工程进化的换热网络优化策略[J]. 计算物理, 2020, 37(3): 341-351. |
[9] | 苏戈曼, 崔国民, 鲍中凯, 肖媛, 岑镇宇. 换热网络中温度交叉结构的分析与处理[J]. 计算物理, 2020, 37(1): 107-118. |
[10] | 鲍中凯, 崔国民, 曹冲, 任杰, 李梦红. 基于公用工程内置策略的换热网络优化[J]. 计算物理, 2019, 36(6): 707-718. |
[11] | 邓炜栋, 崔国民, 朱玉双. 应用固定投资费用松弛策略的换热网络优化[J]. 计算物理, 2019, 36(5): 610-620. |
[12] | 李剑, 崔国民, 陈家星, 肖媛. 采用三层保护策略的强制进化随机游走算法同步综合换热网络[J]. 计算物理, 2019, 36(1): 69-79. |
[13] | 邓炜栋, 崔国民, 肖媛. 一种适用于复杂换热网络优化的耦合联动进化策略[J]. 计算物理, 2018, 35(6): 675-684. |
[14] | 朱玉双, 崔国民, 肖媛, 陈家星. 采用单元进化限制策略的RWCE算法优化换热网络[J]. 计算物理, 2017, 34(5): 593-602. |
[15] | 于盛男, 崔国民, 肖媛, 周剑卫. 应用于换热网络优化的RWCE算法接受差解策略分析与改进[J]. 计算物理, 2017, 34(4): 445-452. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发