计算物理 ›› 2025, Vol. 42 ›› Issue (2): 146-159.DOI: 10.19596/j.cnki.1001-246x.8892

• 研究论文 • 上一篇    下一篇

基于深度学习的扩散方程扩散系数反问题求解

张延庆1(), 谷同祥2,*()   

  1. 1. 中国工程物理研究院研究生院, 北京 100088
    2. 北京应用物理与计算数学研究所, 北京 100094
  • 收稿日期:2024-01-11 出版日期:2025-03-25 发布日期:2025-04-08
  • 通讯作者: 谷同祥
  • 作者简介:

    张延庆, 硕士研究生, 研究方向为深度学习与科学计算, E-mail:

  • 基金资助:
    国家自然科学基金项目(12271055)

Deep Learning Method for Solving Inverse Problem of Diffusion Coefficients for Diffusion Equation

Yanqing ZHANG1(), Tongxiang GU2,*()   

  1. 1. Graduate School of China Academy of Engineering Physics, Beijing 100088, China
    2. Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • Received:2024-01-11 Online:2025-03-25 Published:2025-04-08
  • Contact: Tongxiang GU

摘要:

物理信息神经网络(PINN)为偏微分方程正反问题数值求解开创了一条具有广阔应用前景的新途径。本文聚焦于扩散方程的扩散系数反演问题。针对固定系数、各向异性系数、空间依赖系数、时空依赖系数以及非线性扩散系数等问题展开了系统研究, 提出了求解各类问题所需的网络结构及求解方法。数值实验表明, PINN方法在求解扩散系数反问题时只需较少的数据即可反演出较为精确的未知系数, 并在一定噪声水平下表现出较强的稳健性。

关键词: 物理信息神经网络, 微分方程反问题, 扩散方程, 数值解

Abstract:

Physics-Informed Neural Networks (PINN) have provided a new way of numerically solving forward and inverse problems of partial differential equations with promising applications. This paper focuses on the diffusion coefficient inverse problem of the diffusion equation. A systematic study is carried out for the problems of fixed coefficients, anisotropic coefficients, spatial dependence coefficients, spatio-temporal dependence coefficients, and nonlinear diffusion coefficients, and the neural network structure and solution method required for solving each type of problem are proposed. Numerical experiments show that the PINN method can reconstruct the unknown coefficients accurately with less data and is robust under a certain noise level.

Key words: physics-informed neural networks, inverse problem for partial differential equations, diffusion equation, numerical solution