计算物理 ›› 1991, Vol. 8 ›› Issue (4): 359-372.

• 论文 • 上一篇    下一篇

对流扩散方程的四阶指数型差分格式

陈国谦1, 杨志峰2, 高智1   

  1. 1. 中国科学院力学研究所, 北京 100080;
    2. 北京大学力学系, 北京 100871
  • 收稿日期:1990-03-07 修回日期:1991-11-10 出版日期:1991-12-25 发布日期:1991-12-25

h4 EXPONENTIAL FINITE DIFFERENCE SCHEME FOR CONVECTIVE DIFFUSION EQUATION

Chen Guoqian1, Yang Zhifeng2, Gao Zhi1   

  1. 1. Institute of Mechanics, Academia Sinica, Beijing 100080;
    2. Department of Mechanics, Peking University, Beijing 100871
  • Received:1990-03-07 Revised:1991-11-10 Online:1991-12-25 Published:1991-12-25

摘要: 本文提出差分格式的摄动方法,对二阶指数型格式中对流系数和源项作二阶修正,推演出对流扩散方程的四阶指数型格式。该四阶格式的基本结构与二阶指数型格式完全相同,且其系数或源项中所含二阶修正可根据二阶格式计算结果一次性确定,使得计算十分简便。一至三维的四阶指数型格式均具有无条件稳定性,用于Burgers方程等流体力学模型问题,且与常用格式进行了比较,显示出良好的精度,并能较好地适应大梯度区域。

关键词: 流体力学, 对流扩散方程, 差分格式

Abstract: A kind of exponential finite difference schemes with h4 consistency are developed in this study. The h4 scheme is obtained from a second-order modification of the convective coefficients and the source term in an h2 scheme, and the modification could be determined once and for all from computational information of the h2 scheme, which bring great convenience to the h4 scheme. The proposed exponential scheme are unconditionally stable, and show a excellent accuracy and adaptability to great gradient variation when applicated in illustrative computations of 1D to 3D fluid flow model problems.

Key words: fluid mechanics, convective diffusion equation, exponential finite difference scheme