计算物理 ›› 1999, Vol. 16 ›› Issue (5): 457-466.

• 论文 • 上一篇    下一篇

用有限元方法求解双曲守恒律

蔚喜军1, 符鸿源1, 常谦顺2   

  1. 1. 北京应用物理与计算数学研究所, 计算物理实验室, 100088;
    2. 中科院应用数学研究所, 北京 100080
  • 收稿日期:1998-04-27 修回日期:1999-02-10 出版日期:1999-09-25 发布日期:1999-09-25
  • 作者简介:蔚喜军,男,39,副研究员,博士,北京8009-26信箱,100088
  • 基金资助:
    国家自然科学基金(19771012)和中国工程物理研究院科学基金(970683)资助项目

The finite element method for hyperbolic conservation laws

Yu Xijun1, Fu Hongyuan1, Chang Qianshun2   

  1. 1. Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088;
    2. Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080
  • Received:1998-04-27 Revised:1999-02-10 Online:1999-09-25 Published:1999-09-25

摘要: 应用分片线性插值有限元给出了求解双曲守恒律的计算方法。有别于不连续有限元方法求解双曲守恒律在相邻单元边界上求Riemann解,利用双曲守恒律的Hamilton-Jacobi方程形式,直接应用有限元求解。在CFL下,证明了计算格式满足极大值原理,并且是TVD格式。数值例子在文后给出。此外,方法推广到流体力学方程组和高维问题,将在另文中予以讨论。

关键词: 有限元方法, 双曲守恒律, Hamilton-Jacobi形式

Abstract: A scheme is outlined for solving hyperbolic conservation laws by finite element method of piecewise linear interpolations. It is different from the discontinuous finite element on the boundaries of neighboring cells to solve Riemann problems that the scheme is designed to solve hyperbolic conservation laws based on the Hamilton Jacobi equations. Under the CFL condition, the scheme is proved that it satisfies the maximal principle and is a TVD scheme. Numerical examples are given and discussed.

Key words: Finite element method, Hyperbolic conservation laws, Hamilton Jacobi equations

中图分类号: