计算物理 ›› 1998, Vol. 15 ›› Issue (4): 463-475.

• 论文 • 上一篇    下一篇

NS方程的各向异性笛卡尔网格法研究

吴子牛   

  1. 北京航空航天大学国家计算流体力学实验室 100083
  • 收稿日期:1996-10-28 修回日期:1997-05-08 出版日期:1998-07-25 发布日期:1998-07-25
  • 作者简介:吴子牛,男,35,教授,博士,北京航空航天大学流体所,国家计算流体力学实验室
  • 基金资助:
    由国家自然科学基金资助,项目号为19502002

ANISOTROPIC CARTESIAN GRID METHOD FOR THE NAVIER-STOKES EQUATIONS

Wu Ziniu   

  1. National Laboratory for CFD, Beijing Univer. Aero & Astronautics, Beijing 100083
  • Received:1996-10-28 Revised:1997-05-08 Online:1998-07-25 Published:1998-07-25

摘要: 将近年发展起来的用于Euler方程求解的具有局部均匀网格总体非结构特性的笛卡尔网格法推广到NS方程的求解。为了与流场的各向异性相适应、减少网格点数量,提出了一种各向异性网格加密法。另外还研究了分级笛卡尔网格对内点格式稳定性的影响和插值固体边界条件的稳定性。数值结果表明各向异性笛卡尔网格法相对于传统的各向同性网格方法能大量节省网格点数量而且与后者具有同样的精度。

关键词: 各向异性笛卡尔网格, 固体壁面边界条件, 粘性流动, 稳定性

Abstract: The Cartesian grid method initially developed for computing inviscid flows is extended to viscous flow problems. In order to reduce the number of mesh points and to be compatible with the anisotropic nature of viscous flows, an anisotropic Cartesian grid method is proposed. The stability of a space-centered interior difference scheme and that of a finite-difference solid wall condition are studied for the Cartesian grid. It is found that the anisotropic Cartesian grid method can substantially reduce the number of grid points without jeopadizing the accuracy.

Key words: Cartesian grid, anisotropic refinement, Navier Stokes equations, stability

中图分类号: