Chinese Journal of Computational Physics ›› 2024, Vol. 41 ›› Issue (4): 494-502.DOI: 10.19596/j.cnki.1001-246x.8742
Previous Articles Next Articles
Qinghua QI1,2(), Dadong WEN2,*(
), Bei CHEN1, Ming GAO2, Zhou YI2, Yonghe DENG2, Ke DENG1, Ping PENG3
Received:
2023-04-10
Online:
2024-07-25
Published:
2024-08-24
Contact:
Dadong WEN
CLC Number:
Qinghua QI, Dadong WEN, Bei CHEN, Ming GAO, Zhou YI, Yonghe DENG, Ke DENG, Ping PENG. Heredity and Evolution of Cluster in Rapid Solidification of Liquid Ni50Zr50 Alloy under Different Cooling Rates[J]. Chinese Journal of Computational Physics, 2024, 41(4): 494-502.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8742
Fig.1 Pair distribution functions (PDFs) of rapidly solidified Ni50Zr50 alloy at 300 K for various cooling rates (a) total PDF gtot(r); (b) partial PDF gαβ(r)
Data sources | Measuring method | (R±0.02)/Å | |||
Ni-Ni | Ni-Zr | Zr-Zr | Ni-Zr(tot) | ||
This work | MD | 2.65 | 2.79 | 3.35 | 2.79 |
Ref.[ | MD | 2.64 | 2.77 | 3.34 | 2.78 |
Ref.[ | EXAFS | 2.63 | 2.62 | 3.31 | |
Ref.[ | ND | 2.63 | 2.73 | 3.32 |
Table 1 Comparison between simulated results and experimental values of interatomic distance in Ni50Zr50 glassy alloy (T=300 K) (R, ND, and EXAFS in Table 1 denoetes interatomic distance, neutron diffraction, and extended X-ray absorption fine structure, respectively.)
Data sources | Measuring method | (R±0.02)/Å | |||
Ni-Ni | Ni-Zr | Zr-Zr | Ni-Zr(tot) | ||
This work | MD | 2.65 | 2.79 | 3.35 | 2.79 |
Ref.[ | MD | 2.64 | 2.77 | 3.34 | 2.78 |
Ref.[ | EXAFS | 2.63 | 2.62 | 3.31 | |
Ref.[ | ND | 2.63 | 2.73 | 3.32 |
Fig.2 For rapidly solidified Ni50Zr50 alloy at different cooling rates: (a) Variation of total energy per atom Etot with T(The inner illustration shows the amplification of the Etot -T curve in the temperature range of 650-1050 K.) and (b) variation of reduced glass transition temperature Trg with cooling rate γ (The inner illustration is the glass transition temperature Tg estimated by extrapolation.)
Fig.6 The heredity and growth of a Z11-MRO during the rapid solidification process of liquid Ni50Zr50 alloy (Purple and white balls represent relatively stable central and neighboring atoms, while red and cyan balls represent newly added central and neighboring atoms, respectively; T represents temperature, N represents number of central atoms, and n represents total number of cluster atoms.) (a)T=860 K, N=2, n=18; (b)T=850 K, N=3, n=23; (c)T=730 K, N=6, n=38; (d) T=720 K, N=6, n=42; (e) T=600 K, N=6, n=35; (f) T=300 K, N=6, n=37
Fig.7 Fraction f of staged heredity for typical basic clusters in rapidly solidified Ni50Zr50 alloys with temperature (a) f of different clusters at γ=1×1011 K·s-1; (b) f of (11 2/1441 8/1551 1/1661) clusters at different γ; (c) f of (11 2/1441 8/1551 2/1661) clusters at different γ and (d) f of (12 12/1551) cluster at different γ
1 | 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33 (5): 177- 351. |
2 | 汪卫华. 金属玻璃研究简史[J]. 物理, 2011, 40 (11): 701- 709. |
3 |
汪卫华. 金属玻璃的过去、现在和未来[J]. 自然杂志, 2022, 44 (3): 173- 181.
DOI |
4 |
DU Jinglian , WEN Bin , MELNIK R , et al. First-principles studies on structural, mechanical, thermodynamic and electronic properties of Ni-Zr intermetallic compounds[J]. Intermetallics, 2014, 54, 110- 119.
DOI |
5 |
KIM H K , LEE M , LEE K R , et al. How can a minor element added to a binary amorphous alloy simultaneously improve the plasticity and glass-forming ability?[J]. Acta Materialia, 2013, 61 (17): 6597- 6608.
DOI |
6 |
YU C Y , LIU X J , ZHENG G P , et al. Atomistic approach to predict the glass-forming ability in Zr-Cu-Al ternary metallic glasses[J]. Journal of Alloys and Compounds, 2015, 627, 48- 53.
DOI |
7 |
管立, 吴爱玲, 张晓茹. 液态Au和Ag冷却过程的分子动力学模拟[J]. 计算物理, 2001, 18 (4): 356- 359.
DOI |
8 |
XING L Q , SHEN Y T , KELTON K F . Precipitation of an icosahedrally symmetric ordered phase in Zr-Ti-Cu-Ni-Al metallic glasses[J]. Applied Physics Letters, 2002, 81 (18): 3371- 3373.
DOI |
9 |
WESSELS V , GANGOPADHYAY A K , SAHU K K , et al. Rapid chemical and topological ordering in supercooled liquid Cu46Zr54[J]. Physical Review B, 2011, 83 (9): 094116.
DOI |
10 |
WEN D D , PENG P , JIANG Y Q , et al. The effect of cooling rates on hereditary characteristics of icosahedral clusters in rapid solidification of liquid Cu56Zr44 alloys[J]. Journal of Non-crystalline Solids, 2014, 388, 75- 85.
DOI |
11 |
ABE T , SHIMONO M , ODE M , et al. Estimation of the glass forming ability of the Ni-Zr and the Cu-Zr alloys[J]. Journal of Alloys and Compounds, 2007, 434-435, 152- 155.
DOI |
12 |
GHAEMI M , TAVAKOLI R , FOROUGHI A . Comparing short-range and medium-range ordering in CuZr and NiZr metallic glasses-correlation between structure and glass form ability[J]. Journal of Non-Crystalline Solids, 2018, 499, 227- 236.
DOI |
13 |
ZHANG Pei , MALDONIS J J , BESSER M F , et al. Medium-range structure and glass forming ability in Zr-Cu-Al bulk metallic glasses[J]. Acta Materialia, 2016, 109, 103- 114.
DOI |
14 |
KLUMOV B A , RYLTSEV R E , CHTCHELKATCHEV N M . Polytetrahedral structure and glass-forming ability of simulated Ni-Zr alloys[J]. The Journal of Chemical Physics, 2018, 149 (13): 134501.
DOI |
15 |
WANG Feilong , YIN Dawei , LV Jingwang , et al. Effect of cooling rate on fluidity and glass-forming ability of Zr-based amorphous alloys using different molds[J]. Journal of Materials Processing Technology, 2021, 292, 117051.
DOI |
16 | 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响[J]. 物理学报, 2020, 69 (11): 246- 254. |
17 |
CHENG Y Q , MA E . Indicators of internal structural states for metallic glasses: Local order, free volume, and configurational potential energy[J]. Applied Physics Letters, 2008, 93 (5): 051910.
DOI |
18 |
ZHONG Li , WANG Jiangwei , SHENG Hongwei , et al. Formation of monatomic metallic glasses through ultrafast liquid quenching[J]. Nature, 2014, 512 (7513): 177- 180.
DOI |
19 |
TIAN Zean , LIU Rangsu , DONG Kejun , et al. A new method for analyzing the local structures of disordered systems[J]. Europhysics Letters, 2011, 96 (3): 36001.
DOI |
20 |
HONEYCUTT J D , ANDERSEN H C . Molecular dynamics study of melting and freezing of small Lennard-Jones clusters[J]. Journal of Physical Chemistry, 1987, 91 (19): 4950- 4963.
DOI |
21 | 邓永和, 文大东, 彭超, 等. 二十面体团簇的遗传: 一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数[J]. 物理学报, 2016, 65 (6): 270- 279. |
22 |
PLIMPTON S . Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117 (1): 1- 19.
DOI |
23 |
侯兆阳, 牛媛, 肖启鑫, 等. Al纳米线不同晶向力学行为和变形机制的模拟[J]. 计算物理, 2022, 39 (3): 341- 351.
DOI |
24 | CHOW K H , FERGUSON D M . Isothermal-isobaric molecular dynamics simulations with Monte Carlo volume sampling[J]. Computer Physics Communications, 1995, 91 (1/3): 283- 289. |
25 |
SHENG H W , KRAMER M J , CADIEN A , et al. Highly optimized embedded-atom-method potentials for fourteen fcc metals[J]. Physical Review B, 2011, 83 (13): 134118.
DOI |
26 | 张海燕, 殷新春. 简单金属固液界面固化过程生长机制的分子动力学研究[J]. 计算物理, 2019, 36 (1): 80- 88. |
27 |
王国华, 崔雅茹, 杨泽, 等. FexO-SiO2-CaO-MgO- "NiO" 系镍渣势函数及分子动力学模拟[J]. 计算物理, 2021, 38 (2): 215- 223.
DOI |
28 |
KOBOLD R , KOLBE M , HORNFECK W , et al. Nucleation study for an undercooled melt of intermetallic NiZr[J]. The Journal of Chemical Physics, 2018, 148 (11): 114502.
DOI |
29 |
ZHANG Yue , MATTERN N , ECKERT J . Study of direct relationship between atomic structures and glass forming abilities of Cu100-xZrx (0 < x < 10) liquids by molecular dynamics simulations[J]. Journal of Applied Physics, 2012, 111 (5): 053520.
DOI |
30 |
LU Bf , KONG Lt , LAWS K J , et al. EXAFS and molecular dynamics simulation studies of Cu-Zr metallic glass: Short-to-medium range order and glass forming ability[J]. Materials Characterization, 2018, 141, 41- 48.
DOI |
31 | 高明, 邓永和, 文大东, 等. 快凝Pd82Si18合金原子团簇的演化特性及遗传机制[J]. 物理学报, 2020, 69 (4): 199- 207. |
32 |
WEN T Q , TANG L , SUN Y , et al. Crystal genes in a marginal glass-forming system of Ni50Zr50[J]. Physical Chemistry Chemical Physics, 2017, 19, 30429- 30438.
DOI |
33 |
LIU Xj , HUI Xd , CHEN Gl , et al. Local atomic structures in Zr-Ni metallic glasses[J]. Physics Letters a, 2009, 373 (29): 2488- 2493.
DOI |
34 | SUZUKI K , HAYASHI N , TOMIZUKA Y , et al. Hydrogen atom environments in a hydrogenated ZrNi glass[J]. Journal of Non-crystalline Solids, 1984, 61/62 Part 1, 637- 642. |
35 | 文大东, 邓永和, 戴雄英, 等. 钽过冷液体等温晶化的原子层面机制[J]. 物理学报, 2020, 69 (19): 238- 246. |
36 |
TURNBULL D . Under what conditions can a glass be formed?[J]. Contemporary Physics, 1969, 10 (5): 473- 488.
DOI |
37 |
KAO Suwen , HWANG C C , CHIN T S . Simulation of reduced glass transition temperature of Cu-Zr alloys by molecular dynamics[J]. Journal of Applied Physics, 2009, 105 (6): 064913.
DOI |
38 |
HUANG Mingjun , YUE Kan , WANG Jing , et al. Frank-Kasper and related quasicrystal spherical phases in macromolecules[J]. Science China Chemistry, 2018, 61 (1): 33- 45.
DOI |
39 | MATTERN N , JÓVÁRI P , KABAN I , et al. Short-range order of Cu-Zr metallic glasses[J]. Journal of Alloys and Compounds, 2009, 485 (1/2): 163- 169. |
40 |
LI F , LIU Xj , LU Zp . Atomic structural evolution during glass formation of a Cu-Zr binary metallic glass[J]. Computational Materials Science, 2014, 85, 147- 153.
DOI |
41 |
WEEKS W P , FLORES K M . Using characteristic structural motifs in metallic liquids to predict glass forming ability[J]. Intermetallics, 2022, 145, 107560.
DOI |
[1] | Bili XU, Zhao JING, Xiao LIU, Bo DAI, Guangfu JI, Kuibao ZHANG, Nina GE. Molecular Dynamics Simulation of Physical Properties of Silicon Modified Phenolic Resin [J]. Chinese Journal of Computational Physics, 2024, 41(3): 345-356. |
[2] | Boyao WEN, Genying GAO, Xi LU, Songtao GUAN, Zhengyuan LUO, Bofeng BAI. Ionic Regulation Mechanisms of Surfactant Desorption from the Spherical Micelles [J]. Chinese Journal of Computational Physics, 2024, 41(2): 193-202. |
[3] | Xudong GAO, Shuyi SUN, Wenjing WEI, Gongping LI. A Simulation Study on Irradiation Damage of Rutile TiO2 [J]. Chinese Journal of Computational Physics, 2024, 41(2): 214-221. |
[4] | Yu LI, Huiqing LIU, Yabin FENG, Xiaohu DONG, Qing WANG, Bo ZHANG. Adsorption Behavior of Heavy Oil on Montmorillonite Surface by Typical Surfactant: Molecular Dynamics Simulation [J]. Chinese Journal of Computational Physics, 2023, 40(5): 583-596. |
[5] | Zhaozhao WEI, Kai LIU, Huijun LI. Molecular Dynamics Simulation of Deformation Behavior of NiAl Nanowire Under Bending [J]. Chinese Journal of Computational Physics, 2023, 40(4): 425-435. |
[6] | Zhaoyang HOU, Yuan NIU, Qixin XIAO, Zhen WANG, Qingtian DENG. Simulation of Mechanical Behavior and Deformation Mechanism of Al Nanowires Along Different Crystal Orientations [J]. Chinese Journal of Computational Physics, 2022, 39(3): 341-351. |
[7] | Xiaohui WANG, Ping ZHANG. Structural Stability and Anharmonic Effect of Metallic Hydrogen FCC Phase Under High Pressures [J]. Chinese Journal of Computational Physics, 2022, 39(2): 159-164. |
[8] | Hubao A, Zhibing YANG, Ran HU, Yifeng CHEN. Molecular Dynamics Simulations of Capillary Dynamics at the Nanoscale [J]. Chinese Journal of Computational Physics, 2021, 38(5): 603-611. |
[9] | WANG Guohua, CUI Yaru, YANG Ze, LI Xiaoming, TANG Hongliang, YANG Shufeng. Potential Function and Molecular Dynamics Simulation for FexO-SiO2-CaO-MgO-“NiO” Nickel Slag [J]. Chinese Journal of Computational Physics, 2021, 38(2): 215-223. |
[10] | WANG Xuemei, DONG Bin, ZHU Ziliang, YANG Junsheng. Interfacial Interaction and Diffusion Properties of Functionalized CNT/Polymer Systems: Molecular Dynamics Simulations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(5): 589-594. |
[11] | HE Erbin, LUO Zhirong, ZHU Liuhua. Atomistic Analysis of Myoglobin Mechanical Unfolding [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(2): 205-211. |
[12] | ZHOU Lu, MA Honghe. Molecular Dynamics Simulation on Crystallization Kinetics of Sodium Sulfate in Supercritical Water [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(2): 212-220. |
[13] | SHI Xiaorui, LIU Zhenyu, WU Huiying. Coarse-grained MD Simulation of Nanopore Interaction Influence on Protein Translocation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(1): 63-68. |
[14] | CHAI Rukuan, LIU Yuetian, WANG Junqiang, XIN Jing, PI Jian, LI Changyong. Molecular Dynamics Simulation of Wettability of Calcite and Dolomite [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(4): 474-482. |
[15] | WANG Shuaichuang, ZHANG Gongmu, SUN Bo, SONG Haifeng, TIAN Mingfeng, FANG Jun, LIU Haifeng. Quantum Molecular Dynamics Simulations of Transport Properties of Liquid Plutonium [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(3): 253-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.