[1] 刘耀, 张建波, 李勇, 等. MAX/金属基自润滑复合材料的研究现状及进展[J]. 材料导报, 2015, S2:517-523. [2] SEZGIN A, AYNUR T, YASEMIN O C. Some new members of MAX family including light-elements:Nanolayered Hf2XY (X=Al, Si, P and Y=B, C, N)[J]. Solid State Sciences, 2016, 53:44-55. [3] ARYAL S, SAKIDJA R, OUYANG L, et al. Elastic and electronic properties of Ti2Al(C<em>xN1-x) solid solutions[J]. Journal of the European Ceramic Society, 2015, 35(12):3219-3227. [4] JIAO Z Y, MA S H, WANG T X. High-pressure phase stability, mechanical properties and bonding characteristics of Ti4GeC3 compound[J]. Solid State Sciences, 2015, 39:97-104. [5] HOPFELD M, GRIESELER R, VOGEL A, et al. Tribological behavior of selected Mn+1AX<em>n phase thin films on silicon substrates[J]. Surface and Coatings Technology, 2014, 257:286-294. [6] NAVID A, MINA S, HAMID B, et al. Reviewing the effects of different additives on the synthesis of the Ti3SiC2 MAX phase by mechanical alloying technique[J]. International Journal of Refractory Metals and Hard Materials, 2016, 61:67-78. [7] NOWOTNY H. Struktuchemie einiger verbindungen der ubergangseralle mit den elementen C, Si, Ge, Sn[J]. Prog Solid State Chem, 1971, 5:27-70. [8] BARSOUM M W. The Mn+1AXn phases:A new class of solids thermodynamically stable nanolaminates[J]. Prog Solid State Chem, 2000, 28(1/4):201-281. [9] 战再吉, 吕云巧, 王文魁. 三元层状化合物MAX相的研究进展[J]. 燕山大学学报, 2012, 36(3):189-195. [10] SUN Z M. Progress in research and development on MAX phases:A family of layered ternary compounds[J]. International Materials Reviews, 2011, 56(3):143-166. [11] SHEIN I R, IVANOVYSKⅡ A L. Planar nano-block structures Tin+1Al0.5C<em>n and Tin+1C<em>n (n=1 and 2) from MAX phases:Structural, electronic properties and relative stability from first principles calculations[J]. Superlattices Microstruct, 2012, 52:147-157. [12] 谭青. 热压合成Ti4AlN3及其性能研究[D]. 武汉:武汉理工大学, 2010. [13] 朱教群. 三元层状碳化物Ti3SiC2的制备及性能研究[D]. 武汉:武汉理工大学, 2003. [14] 刘佳磊. Ti2AlN三元化合物陶瓷薄膜的制备及组织性能研究[D]. 长春:长春工业大学, 2011. [15] 张梨梨. Ti2AlN三元陶瓷的制备及其腐蚀剥离行为研究[D]. 西安:陕西科技大学, 2016. [16] JEITSCHKO W, NOWOTNY H, BENESOYSKY F. Ti2AlN eine stickstoffhaltige H-phase[J]. Monatsh Chem, 1963, 94(6):1198-1200. [17] JEITSCHKO W, NOWOTNY H, BENESOYSKY F. Ti3AlN2 eine stickstoffhaltige H-phase[J]. Monatsh Chem, 1964, 95(1):319-321. [18] PROCOPIO A T, EL-RAGHY T, BARSOUM M W. Synthesis of Ti4AlN3 and phases equilibria in the Ti-Al-N system[J]. Journal of the American Ceramic Society, 2000, 31(A2):373-378. [19] BARSOUM M W, FARBER L, LEVIN I, et al. High-resolution transmission flectron microscopy of Ti4AlN3 or Ti3Al2N2 revisited[J]. Journal of the American Ceramic Society, 1999, 82(9):2545-2547. [20] SCHUSTER J C, BAUER J. The ternary system titanium-aluminum-nitrogen[J]. Journal of Solid State Chemistry, 1984, 53(2):260-265. [21] YAKOUBI A, BELDI L, BOUHAFS B, et al. Full-relativistic calculation of electronic structure of Zr2AlC and Zr2AlN[J]. Solid State Communications, 2006, 139(9):485-489. [22] DAOUDI B, YAKOUBI A, BELDI L, et al. Full-potential electronic structure of Hf2AlC and Hf2AlN[J]. Acta Materialia, 2007, 55(12):4161-4165. [23] KHAZAEI M, ARAI M, SASAKI T, et al. Trends in electronic structures and structural properties of MAX phases:A first-principles study on M2AlC (M=Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases[J]. Journal of Physics:Condensed Matter, 2014, 26(50):505503. [24] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift fuer Kristallographie, 2005, 220(5-6):567-570. [25] PERDEW J P. Restoring the density-gradient expansion for exchange in a GGA for solid and surfaces[J]. Physical Review Letters, 2008, 100:136406. [26] TAN J, ZHU K, PENG J. First-Principles simulation on structure-property of Ti-Al intermetallic compounds[J]. Chinese Journal of Computational Physics, 2017, 34(3):365-373. [27] LIU X, REN Y. Solid solution structure and elastic modulus of single atom in transition metal nitrides:First principle studies[J]. Chinese Journal of Computational Physics, 2013, 30(3):433-440. [28] GHOSH G, ASTA M. First-principles calculation of structural energetics of Al-TM (TM=Ti, Zr, Hf) intermetallics[J]. Acta Materialia, 2005, 53:3225-3252. [29] DUAN Y H, HUANG B, SUN Y, et al. Stability, elastic properties and electronic structures of the stable Zr-Al intermetallic compounds:A first-principles investigation[J]. Journal of Alloys and Compounds, 2014, 590:50-60. [30] COVER M F, WARSCHKOW O, BILEK M M M, et al. A comprehensive survey of M2AX phase elastic properties[J]. Journal of Physics:Condensed Matter, 2009, 21(30):305403. [31] BARSOUM M W, RADOVIC M. Elastic and mechanical properties of the MAX phases[J]. Annual Review of Materials Research, 2011, 41:195-227. [32] COWLEY R A. Acoustic phonon instabilities and structural phase transitions[J]. Physical Review B, 1976, 13(11):4877-4885. [33] VOIGT W. Lehrbuch der Kristallphysik[M]. Leipzig:B G Teubner, 1928. [34] REUSS A. Berchung der fiessgrenze von mischkristallen auf grund der plastiziatsbedingung fur einkristalle[J]. Z Angew Math Mech, 1929, 9:49-58. [35] HILL R. The elastic behavior of a crystalline aggregate[J]. Proc Phys Soc London, Sect A, 1952, 65(5):349-354. [36] CHEN X Q, NIU H, LI D, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses[J]. Intermetallics, 2011, 19(9):1275-1281. [37] PUGH S F. Relations between the elastic modulus and the plastic properties of polycrystalline pure metals[J]. Philosophical Magazine, 1954, 45(367):823-843. |