计算物理 ›› 2021, Vol. 38 ›› Issue (6): 693-706.DOI: 10.19596/j.cnki.1001-246x.8327
高普阳()
收稿日期:
2020-12-29
出版日期:
2021-11-25
发布日期:
2022-04-27
作者简介:
高普阳(1991-), 男, 讲师, E-mail: gaopuyang@chd.edu.cn
基金资助:
Received:
2020-12-29
Online:
2021-11-25
Published:
2022-04-27
摘要:
针对聚合物充填过程中的裹气现象,采用一种有限元(FEM)-间断有限元(DG)耦合算法对其进行数值模拟。对于自由运动界面,采用水平集(Level Set)方法进行捕捉;用XPP(eXtended Pom-Pom)本构模型来描述黏弹性流体的流变行为。采用有限元-间断有限元耦合算法求解统一的流场方程,并采用隐式间断有限元求解XPP本构方程、Level Set及其重新初始化方程。数值结果与文献中的实验结果及模拟结果吻合较好,验证了数值方法的稳定性及准确性。分析带有非规则嵌件型腔内,注射速度及浇口尺寸对裹气现象的影响,裹气容易出现在较高注射速度及较小浇口的情形。
中图分类号:
高普阳. 聚合物充填过程中裹气现象的数值模拟[J]. 计算物理, 2021, 38(6): 693-706.
Puyang GAO. Numerical Investigation of Gas Entrapment in Polymer Filling Process[J]. Chinese Journal of Computational Physics, 2021, 38(6): 693-706.
图3 不同时刻实验结果(左)和数值结果(右)的对比(a) t=2.48;(b) t=3.0;(c) t=3.4;(d) t=3.7
Fig.3 A comparison of experimental (left) and numerical (right) results at different time instants (a) t=2.48, (b) t=3.0, (c) t=3.4, (d) t=3.7
图7 不同时刻实验结果(左)和数值结果(右)(a) t=0.4;(b) t=0.7;(c) t=1.1;(d) t=1.33
Fig.7 Experimental (left) and numerical (right) results (a) t=0.4; (b) t=0.7; (c) t=1.1; (d) t=1.33
图10 u=2.0时不同时刻前沿界面形态(a)t=0.2;(b)t=0.7;(c)t=1.0;(d)t=1.15
Fig.10 Profiles of interface front with u=2.0 at different time (a) t=0.2; (b) t=0.7; (c) t=1.0; (d) t=1.15
图11 不同网格上计算得到t=0.7时刻的(a)前沿界面及(b) τxx、(c) τxy和(d) τyy
Fig.11 (a) Profiles of interface front and (b) τxx, (c) τxy, (d) τyy at t=0.7 on different meshes
图12 u=10时不同时刻前沿界面形态(a)t=0.09;(b)t=0.15;(c)t=0.19;(d)t=0.28
Fig.12 Profiles of interface front with u=10 at different time (a) t=0.09; (b) t=0.15; (c) t=0.19; (d) t=0.28
τxx | τxy | τyy | ||||||
最小值 | 最大值 | 最小值 | 最大值 | 最小值 | 最大值 | |||
u=2 | -1.8 | 2.3 | -2.1 | 2.1 | -0.95 | -0.92 | ||
u=5 | -3.7 | 5.9 | -4.7 | 4.7 | -3.1 | 2.4 | ||
u=10 | -4.1 | 6.7 | -5.3 | 5.3 | -3.4 | 3.9 |
表1 中等尺寸浇口下τxx, τxy, τyy的最大、最小值
Table 1 The minimum and maximum of τxx, τxy, τyy for a injection gate with middle size
τxx | τxy | τyy | ||||||
最小值 | 最大值 | 最小值 | 最大值 | 最小值 | 最大值 | |||
u=2 | -1.8 | 2.3 | -2.1 | 2.1 | -0.95 | -0.92 | ||
u=5 | -3.7 | 5.9 | -4.7 | 4.7 | -3.1 | 2.4 | ||
u=10 | -4.1 | 6.7 | -5.3 | 5.3 | -3.4 | 3.9 |
图13 u=2.0时不同时刻前沿界面形态(a) t=0.3;(b) t=1.5;(c) t=2.0;(d) t=2.5
Fig.13 The development of interface front with u=2.0 at (a) t=0.3; (b) t=1.5; (c) t=2.0; (d) t=2.5
图14 u=5.0时不同时刻前沿界面形态(a) t=0.3;(b) t=0.6;(c) t=0.8;(d) t=1.1
Fig.14 Free surfaces for u=5.0 at different time instants (a) t=0.3; (b) t=0.6; (c) t=0.8; (d) t=1.1
图15 u=10.0时不同时刻前沿界面形态(a) t=0.05;(b) t=0.15;(c) t=0.2;(d) t=0.3
Fig.15 The development of melt front with u=10.0 at (a) t=0.05; (b) t=0.15; (c) t=0.2; (d) t=0.3
τxx | τxy | τyy | ||||||
最小值 | 最大值 | 最小值 | 最大值 | 最小值 | 最大值 | |||
u=2 | -1.9 | 2.2 | -1.8 | 1.8 | -0.86 | 1.1 | ||
u=5 | -2.7 | 4.1 | -4.7 | 4.7 | -2.6 | 2.3 | ||
u=10 | -3.7 | 5.7 | -5.4 | 5.4 | -2.9 | 2.7 |
表2 较小尺寸浇口下τxx, τxy, τyy的最大、最小值
Table 2 The minimum and maximum of τxx, τxy, τyy for a smaller injection gate
τxx | τxy | τyy | ||||||
最小值 | 最大值 | 最小值 | 最大值 | 最小值 | 最大值 | |||
u=2 | -1.9 | 2.2 | -1.8 | 1.8 | -0.86 | 1.1 | ||
u=5 | -2.7 | 4.1 | -4.7 | 4.7 | -2.6 | 2.3 | ||
u=10 | -3.7 | 5.7 | -5.4 | 5.4 | -2.9 | 2.7 |
图16 u=5.0时熔体前沿界面在不同时刻的形态(a) t=0.08;(b) t=0.18;(c) t=0.25;(d) t=0.4
Fig.16 Profiles of melt front with u=5.0 at four time instants (a) t=0.08; (b) t=0.18; (c) t=0.25; (d) t=0.4
图17 u=10.0时熔体前沿界面在不同时刻的形态(a) t=0.05;(b) t=0.1;(c) t=0.15;(d) t=0.25
Fig.17 Profiles of interface front with u=10.0 at different time instants (a) t=0.05; (b) t=0.1; (c) t=0.15; (d) t=0.25
τxx | τxy | τyy | ||||||
最小值 | 最大值 | 最小值 | 最大值 | 最小值 | 最大值 | |||
u=2 | -1.7 | 2.8 | -4.8 | 4.8 | -0.95 | 1.05 | ||
u=5 | -5.1 | 6.1 | -6.3 | 6.3 | -3.0 | 3.9 | ||
u=10 | -5.6 | 6.2 | -7.0 | 7.0 | -4.1 | 4.6 |
表3 较大尺寸浇口下τxx, τxy, τyy的最大、最小值
Table 3 The minimum and maximum of τxx, τxy, τyy for a bigger injection gate
τxx | τxy | τyy | ||||||
最小值 | 最大值 | 最小值 | 最大值 | 最小值 | 最大值 | |||
u=2 | -1.7 | 2.8 | -4.8 | 4.8 | -0.95 | 1.05 | ||
u=5 | -5.1 | 6.1 | -6.3 | 6.3 | -3.0 | 3.9 | ||
u=10 | -5.6 | 6.2 | -7.0 | 7.0 | -4.1 | 4.6 |
1 |
FERNANDES C B P, PONTES A J, VIANA J C, et al. Modeling and optimization of the injection-molding process: A review[J]. Advances in Polymer Technology, 2018, 37 (2): 429- 449.
DOI |
2 | 姜开宇, 左军超, 杨磊, 等. 聚合物熔体环绕型芯充型流动行为的物理可视化分析[J]. 高分子材料科学与工程, 2016, 32 (1): 120- 124. |
3 |
WEI P, TSAI C, TSENG T, et al. Solute convection effects on a bubble entrapped as a pore during unidirectional upward solidification[J]. International Journal of Heat and Mass Transfer, 2019, 135, 62- 71.
DOI |
4 |
CAO L, LIAO D, SUN F, et al. Prediction of gas entrapment defects during zinc alloy high-pressure die casting based on gas-liquid multiphase flow model[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94 (1-4): 807- 815.
DOI |
5 |
HERNANDEZ-ORTEGA J, ZAMORA R, PALACIOS J, et al. An experimental and numerical study of flow patterns and air entrapment phenomena during the filling of a vertical die cavity[J]. Journal of Manufacturing Science and Engineering, 2010, 132 (5): 051011.
DOI |
6 |
CAO W, ZHOU Z, JIANG F. Smoothed particle hydrodynamics modeling and simulation of foundry filling process[J]. Transactions of Nonferrous Metals Society of China, 2015, 25 (7): 2321- 2330.
DOI |
7 |
THAKKAR N, LAKDAWALA A, SHARMA A, et al. Coupled level-set and immersed-boundary method for simulation of filling in a complex geometry based mold[J]. Numerical Heat Transfer Part B: Fundamentals, 2018, 74 (6): 861- 882.
DOI |
8 | 张世勋, 曹伟, 叶曙兵, 等. 高速微注射成型中熔体充填模式及裹气机理研究[J]. 中国塑料, 2012, 26 (1): 65- 70. |
9 |
ZHUANG X, OUYANG J, LI Y, et al. A three-dimensional thermal model for viscoelastic polymer melt packing process in injection molding[J]. Applied Thermal Engineering, 2018, 128, 1391- 1403.
DOI |
10 |
GAO P, WANG X, OUYANG J. Numerical investigation of non-isothermal viscoelastic filling process by a coupled finite element and discontinuous Galerkin method[J]. International Journal of Heat and Mass Transfer, 2019, 140, 227- 242.
DOI |
11 |
VERBEETEN W M, PETERS G W, BAAIJENS F P. Viscoelastic analysis of complex polymer melt flows using the eXtended Pom-Pom model[J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 108 (1-3): 301- 326.
DOI |
12 |
FROLKOVIČ P, MIKULA K. Semi-implicit second order schemes for numerical solution of level set advection equation on Cartesian grids[J]. Applied Mathematics and Computation, 2018, 329, 129- 142.
DOI |
13 | DING S, XU S, LU J, et al. Moving shock interacting with cylindrical water columns and a nozzle flow field: rGFM and level-set method[J]. Chinese Journal of Computational Physics, 2019, 36 (2): 165- 174. |
14 | GAO P, OUYANG J, ZHOU W. Coupling of finite element method and discontinuous Galerkin method to simulate viscoelastic flows[J]. International Journal for Numerical Methods in Fluids, 2018, 86 (6): 414- 432. |
15 |
OLSSON E, KREISS G. A conservative level set method for two phase flow[J]. Journal of Computational Physics, 2005, 210 (1): 225- 246.
DOI |
16 |
PILLAPAKKAM S B, SINGH P. A level-set method for computing solutions to viscoelastic two-phase flow[J]. Journal of Computational Physics, 2001, 174 (2): 552- 578.
DOI |
17 | ZHANG L, YANG G, HU D, et al. An approach based on level set method for void identification of continuum structure with time-domain dynamic response[J]. Applied Mathematical Modelling, 2019, 75, 446- 480. |
18 | MA X, ZHOU D. Identification of channel geometry with level set based two-stage MCMC method[J]. Chinese Journal of Computational Physics, 2018, 35 (3): 321- 329. |
19 | ZHAO L, MAO J, BAI X, et al. Finite element implementation of an improved conservative level set method for two-phase flow[J]. Computers & Fluids, 2014, 100, 138- 154. |
20 | SUSSMAN M, FATEMI E, SMEREKA P, et al. An improved level set method for incompressible two-phase flows[J]. Computers & Fluids, 1998, 27 (5-6): 663- 680. |
21 | GUO H, OUYANG J. Simulation of gas-liquid two-phase flows with discontinuous Galerkin method[J]. Chinese Journal of Computational Physics, 2015, 32 (2): 160- 168. |
22 | FERRER E, WILLDEN R. A high order discontinuous Galerkin finite element solver for the incompressible Navier-Stokes equations[J]. Computers & Fluids, 2011, 46 (1): 224- 230. |
23 | MARCHANDISE E, REMACLE J. A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows[J]. Journal of Computational Physics, 2006, 219 (2): 780- 800. |
24 | HECHT F. New development in FreeFem++[J]. Journal of Numerical Mathematics, 2012, 20 (3/4): 251- 266. |
25 | XIE P, GUO F, JIAO Z, et al. Effect of gate size on the melt filling behavior and residual stress of injection molded parts[J]. Materials & Design, 2014, 53, 366- 372. |
26 | YANG B, OUYANG J, LI Q, et al. Modeling and simulation of the viscoelastic fluid mold filling process by level set method[J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165 (19/20): 1275- 1293. |
27 | ZHUANG X, OUYANG J, LI W, et al. Three-dimensional simulations of non-isothermal transient flow and flow-induced stresses during the viscoelastic fluid filling process[J]. International Journal of Heat and Mass Transfer, 2017, 104, 374- 391. |
28 | 余晓容. 注塑模优化设计理论的研究与应用[D]. 郑州: 郑州大学, 2004. |
[1] | 朱家莉, 尚月强. 不可压缩流的并行两水平稳定有限元算法[J]. 计算物理, 2022, 39(3): 309-317. |
[2] | 李宏明, 李茂生. 晶体塑性有限元方法研究辐照对多晶铜力学性能的影响[J]. 计算物理, 2022, 39(1): 6-16. |
[3] | 杜丹, 李帅, 阳璞琼, 冯军, 向东, 龚学余. 螺旋天线轴向长度对螺旋波传播、吸收的影响[J]. 计算物理, 2021, 38(6): 713-721. |
[4] | 丁琪, 尚月强. 非定常Navier-Stokes方程基于两重网格离散的有限元并行算法[J]. 计算物理, 2020, 37(1): 10-18. |
[5] | 张庆福, 姚军, 黄朝琴, 李阳, 王月英. 裂缝性介质多尺度深度学习模型[J]. 计算物理, 2019, 36(6): 665-672. |
[6] | 温小静, 屈瑜, 陈城钊. 双层开口环的圆二色性数值研究[J]. 计算物理, 2019, 36(3): 357-362. |
[7] | 陈恭, 王一正, 王烨, 张纯禹. 缩减基有限元方法快速求解参数化偏微分方程[J]. 计算物理, 2018, 35(5): 515-524. |
[8] | 于晨阳, 范宣华, 王柯颖, 肖世富. 基于PANDA平台的多点基础激励谐响应的并行计算[J]. 计算物理, 2018, 35(4): 443-450. |
[9] | 李凌霄. 不可压缩流基于块预处理的并行有限元计算[J]. 计算物理, 2018, 35(2): 151-160. |
[10] | 葛志昊, 吴慧丽. 体积约束的非局部扩散问题的加罚有限元方法[J]. 计算物理, 2018, 35(2): 161-168. |
[11] | 段茂昌, 蔚喜军, 陈大伟, 黄朝宝, 安娜. DG方法求解可压缩气固两相流动[J]. 计算物理, 2017, 34(6): 631-640. |
[12] | 杨晓成, 尚月强. 大雷诺数Navier-Stokes方程的两水平亚格子模型稳定化方法[J]. 计算物理, 2017, 34(6): 657-665. |
[13] | 朱晓钢, 聂玉峰, 王俊刚, 袁占斌. 分数阶对流扩散方程的特征有限元方法[J]. 计算物理, 2017, 34(4): 417-424. |
[14] | 赵国忠, 蔚喜军, 郭怀民. 二维Lagrangian坐标系下可压气动方程组的间断Petrov-Galerkin方法[J]. 计算物理, 2017, 34(3): 294-308. |
[15] | 梁艳萍, 丁新, 陈元琦, 于鸿浩. 比例边界有限元法在电机电磁场问题中的应用[J]. 计算物理, 2017, 34(2): 205-213. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发