计算物理 ›› 2023, Vol. 40 ›› Issue (4): 490-499.DOI: 10.19596/j.cnki.1001-246x.8582

• • 上一篇    下一篇

电磁场耦合忆阻Izhikevich神经网络电活动研究

陆丽梅, 韦笃取*()   

  1. 广西师范大学电子工程学院, 广西 桂林 541004
  • 收稿日期:2022-06-28 出版日期:2023-07-25 发布日期:2023-10-13
  • 通讯作者: 韦笃取
  • 作者简介:

    陆丽梅(1999-), 硕士研究生, 主要研究方向为忆阻神经网络动力学行为分析与控制

  • 基金资助:
    国家自然科学基金(62062014); 广西自然科学基金(2021JJA170004)

Firing Activity of Memristive Izhikevich Neural Network Under Electromagnetic Field Coupling

Limei LU, Duqu WEI*()   

  1. College of Electronic Engineering, Guangxi Normal University, Guilin, Guangxi 541004, China
  • Received:2022-06-28 Online:2023-07-25 Published:2023-10-13
  • Contact: Duqu WEI

摘要:

考虑到电磁场的影响, 在Izhikevich神经元模型中引入电场变量和磁通变量, 利用电突触耦合构建神经网络, 研究电磁场耦合忆阻Izhikevich神经网络集体动力学行为。数值仿真发现: 随着电突触耦合强度的增大, 神经网络逐渐达到同步状态, 并且神经元的放电模式也会随之改变。增大磁场耦合值可以提高神经元的放电活性, 并且对网络同步也有一定的促进作用, 而增大电场则会抑制神经元的放电活动。另外, 当电突触与磁场耦合共同作用时, 磁场耦合值越小, 电突触耦合更能有效促进网络同步; 在电突触耦合强度的作用下, 电场抑制电活动的效果更明显。研究结果可望为理解神经系统中的信号编码和传递提供新的见解。

关键词: Izhikevich神经元, 电突触, 电磁感应, 同步

Abstract:

The electrophysiological environment inside and outside the neuron will generate an electric field due to the transmission and concentration of ions, which will then excite the magnetic field, and the formed electromagnetic field will work together to regulate the electrical activity of the neuron. Therefore, considering the influence of electromagnetic field, this paper introduces electric field variables and magnetic flux variables into the traditional neuron model and uses electrical synaptic coupling to construct neuron network, then studies the collective dynamic behavior of memristive Izhikevich neural network under electromagnetic field coupling. Through numerical simulation, it is found that the increase of the electrical synaptic coupling value will change the firing pattern of neurons, and make the neural network achieve synchronization. Increasing the coupling value of magnetic field can increase the firing activity of neurons, and have a beneficial effect on the network synchronization, while increasing the electric field can inhibit the electrical activity of neurons. In addition, when electrical synaptic and magnetic field coupling work together, the smaller value of the magnetic field coupling, the more effective the electrical synaptic coupling can promote network synchronization. The electric field is more effective in suppressing electrical activity given the strength of the electrical synaptic coupling. The findings are expected to provide new perspectives for understanding signal encoding and transmission in the nervous system.

Key words: Izhikevich neuron, electrical synapse, electromagnetic induction, synchronization