计算物理 ›› 2023, Vol. 40 ›› Issue (5): 622-632.DOI: 10.19596/j.cnki.1001-246x.8632

• • 上一篇    下一篇

随机边界诱导Izhikevich神经元网络的时空模式转换

王国威1(), 付燕2   

  1. 1. 南昌工学院教育学院, 江西 南昌 330108
    2. 豫章师范学院数学与计算机学院, 江西 南昌 330103
  • 收稿日期:2022-09-05 出版日期:2023-09-25 发布日期:2023-11-02
  • 作者简介:

    王国威(1987—)男,博士,副教授,研究方向为计算神经科学和生物物理学,E-mail:

  • 基金资助:
    江西省科技厅自科基金面上项目(20232BAB201048); 江西省教育厅科学技术研究项目(GJJ203111); 江西省教育厅科学技术研究项目(CJJ2202903); 江西省教育厅科学技术研究项目(CJJ210841); 南昌工学院科技计划博士专项基金(NGKJ-21-03); 南昌工学院引进人才科研启动基金(NGRCZX-22-07); 豫章师范学院科技项目(YZYB-21-17)

Stochastic Boundary-induced Spatiotemporal Pattern Transformation in Izhikevich Neuronal Networks

Guowei WANG1(), Yan FU2   

  1. 1. School of Education, Nanchang Institute of Science and Technology, Nanchang, Jiangxi 330108, China
    2. School of Mathematics and Computer Science, Yuzhang Normal University, Nanchang, Jiangxi 330103, China
  • Received:2022-09-05 Online:2023-09-25 Published:2023-11-02

摘要:

在随机边界条件下构建由200 × 200个Izhikevich神经元组成的方形网络, 并利用计算机模拟计算方形网络的时空特性和同步因子, 对神经元的放电模式、分岔现象以及方形网络的时空模式和同步性质进行研究。研究结果表明: 在相同电流刺激和耦合强度下, 由不同放电模式Izhikevich神经元构建的方形网络中, 仅当神经元处于Regular Spiking放电模式下才能在网络中观察到螺旋波种子的出现和消失; 对于其他放电模式(Fast Spiking, Chattering和Intrinsically Bursting)的Izhikevich神经元构建的方形网络, 则无法观察到螺旋波种子的出现。当外界电流刺激恒定时, 只有当神经元之间的耦合强度为中等大小时才可在方形网络中观察到螺旋波种子的出现和消亡, 相对较小或较大的耦合强度不能诱导神经元网络出现螺旋波种子。对方形神经网络中的同步因子研究发现同步因子随耦合强度的变化存在类似"反共振"的形式。

关键词: 螺旋波, 时空, 神经元, 随机, 网络, 模式转换

Abstract:

Izhikevich neuronal model is based on the modeling of cortical and thalamic neurons. This model has the characteristics of being closer to the discharge properties of real biological neurons and it is convenient for large-scale simulation. A square neural network composed of 200 × 200 Izhikevich neurons is constructed under random boundary conditions in this paper, the computer simulation method is used to calculate the spatiotemporal characteristics and synchronization factor of the square network, and the firing patterns and bifurcation phenomena of neurons, as well as the spatiotemporal patterns and synchronization properties of the square network are studied. The results show that in the square neural network constructed by Izhikevich neurons with different discharge modes under the same current stimulation and coupling intensity, the emergence and disappearance of spiral wave seeds can be observed in the neural network only when the neurons are in the Regular Spiking discharge mode. On the other hand, spiral wave seeds cannot be observed in the square neural network constructed by Izhikevich neurons with other discharge modes (e.g. Fast Spiking, Chattering, Internally Bursting). When the external current stimulation is constant, only the medium-sized coupling strength between neurons can induce the emergence and extinction of spiral wave seeds in the square neural network, and smaller or larger coupling strength cannot induce spiral wave seeds in the neural network. In addition, the synchronization factor in square neural networks has been investigated.

Key words: spiral waves, spatiotemporal, neurons, stochastic, networks, mode transformation