1 |
YANG Xuejun , LIAO Xiangke , LU Kai , et al. The TianHe-1A supercomputer: Its hardware and software[J]. Journal of Computer Science and Technology, 2011, 26 (3): 344- 351.
DOI
|
2 |
LIAO Xiangke , XIAO Liquan , YANG Canqun , et al. MilkyWay-2 supercomputer: System and application[J]. Frontiers of Computer Science, 2014, 8 (3): 345- 356.
DOI
|
3 |
WANG Ruibo , LU Kai , CHEN Juan , et al. Brief introduction of TianHe exascale prototype system[J]. Tsinghua Science and Technology, 2021, 26 (3): 361- 369.
DOI
|
4 |
高翔, 张翔, 徐传福, 等. 面向科学工程计算的通用网格生成软件系统研究[J]. 计算机工程与科学, 2020, 42 (10): 1897- 1904.
DOI
|
5 |
DE COUGNY H L , SHEPHARD M S . Parallel refinement and coarsening of tetrahedral meshes[J]. International Journal for Numerical Methods in Engineering, 1999, 46 (7): 1101- 1125.
DOI
|
6 |
CHEN Xinhai , GONG Chunye , LIU Jie , et al. A novel neural network approach for airfoil mesh quality evaluation[J]. Journal of Parallel and Distributed Computing, 2022, 164, 123- 132.
DOI
|
7 |
CHEN Xinhai , LIU Jie , GONG Chunye , et al. MVE-Net: An automatic 3-D structured mesh validity evaluation framework using deep neural networks[J]. Computer Aided Design, 2021, 141, 103104.
DOI
|
8 |
CHEN Xinhai , LIU Jie , PANG Yufei , et al. Developing a new mesh quality evaluation method based on convolutional neural network[J]. Engineering Applications of Computational Fluid Mechanics, 2020, 14 (1): 391- 400.
DOI
|
9 |
CHEN Xinhai, LIU Jie, GONG Chunye, et al. An airfoil mesh quality criterion using deep neural networks[C]//2020 12th International Conference on Advanced Computational Intelligence (ICACI). Dali, China: IEEE, 2020: 536-541.
|
10 |
CHEN Xinhai , GONG Chunye , WAN Qian , et al. Transfer learning for deep neural network-based partial differential equations solving[J]. Advances In Aerodynamics, 2021, 3 (1): 635- 648.
|
11 |
CHEN Xinhai , LI Tiejun , WAN Qian , et al. MGNet: A novel differential mesh generation method based on unsupervised neural networks[J]. Engineering With Computers, 2022, 38 (5): 4409- 4421.
DOI
|
12 |
ZHANG Huajian , GUO Xiaowei , LI Chao , et al. Accelerating FVM-based parallel fluid simulations with better grid renumbering methods[J]. Applied Sciences, 2022, 12 (15): 7603.
DOI
|
13 |
FARHAT C . A simple and efficient automatic fem domain decomposer[J]. Computers & Structures, 1988, 28 (5): 579- 602.
|
14 |
GEORGE J A . Computer implementation of the finite element method[M]. Stanford, CA: Stanford University, 1971.
|
15 |
ZHANG Yichen, LI Shengguo, YUAN Fan, et al. Memory-aware optimization for sequences of sparse matrix-vector multiplications[C]//2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS). St. Petersburg, FL, USA: IEEE, 2023: 379-389.
|
16 |
YANG Xiaojian, LI Shengguo, YUAN Fan, et al. Optimizing multi-grid computation and parallelization on multi-cores[C]//Proceedings of the 37th International Conference on Supercomputing. Orlando, FL, USA: Association for Computing Machinery, 2023: 227-239.
|
17 |
LI Shengguo , GU Ming , WU C J , et al. New efficient and robust HSS Cholesky factorization of SPD matrices[J]. SIAM Journal on Matrix Analysis and Applications, 2012, 33 (3): 886- 904.
DOI
|
18 |
LI Shengguo , GU Ming , CHENG Lizhi . Fast structured LU factorization for nonsymmetric matrices[J]. Numerische Mathematik, 2014, 127 (1): 35- 55.
DOI
|
19 |
LI Shengguo , LIAO Xiangke , LIU Jie , et al. New fast divide-and-conquer algorithms for the symmetric tridiagonal eigenvalue problem[J]. Numerical Linear Algebra with Applications, 2016, 23 (4): 656- 673.
DOI
|
20 |
LI Shengguo , GU Ming , CHENG Lizhi , et al. An accelerated divide-and-conquer algorithm for the bidiagonal SVD problem[J]. SIAM Journal on Matrix Analysis and Applications, 2014, 35 (3): 1038- 1057.
DOI
|
21 |
LIAO Xia , LI Shengguo , LU Yutong , et al. A parallel structured divide-and-conquer algorithm for symmetric tridiagonal eigenvalue problems[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32 (2): 367- 378.
DOI
|
22 |
LI Runhua , LIU Jie , ZHANG Guangchun , et al. An efficient heterogeneous parallel algorithm of the 3D MOC for multizone heterogeneous systems[J]. Computer Physics Communications, 2023, 292, 108806.
DOI
|
23 |
PENG Jintao, LIU Jie, DAI Yi, et al. Optimizing all-to-all collective communication on Tianhe supercomputer[C]//2022 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). Melbourne, Australia: IEEE, 2022: 402-409.
|
24 |
WANG Qinglin, MEI Songzhu, LIU Jie, et al. Parallel convolution algorithm using implicit matrix multiplication on multi-core CPUs[C]//2019 International Joint Conference on Neural Networks (IJCNN). Budapest, Hungary: IEEE, 2019: 1-7.
|
25 |
王庆林, 李东升, 梅松竹, 等. 面向飞腾多核处理器的Winograd快速卷积算法优化[J]. 计算机研究与发展, 2020, 57 (6): 1140- 1151.
|
26 |
WANG Qinglin, LI Dongsheng, HUANG Xiandong, et al. Optimizing FFT-based convolution on ARMv8 multi-core CPUs[C]//Euro-Par 2020: Parallel Processing: 26th International Conference on Parallel and Distributed Computing, Warsaw, Poland: Springer, 2020: 248-262.
|
27 |
HUANG Xiandong , WANG Qinglin , LU Shuyu , et al. Evaluating FFT-based algorithms for strided convolutions on ARMv8 architectures[J]. Performance Evaluation, 2021, 152, 102248.
DOI
|
28 |
HAO Ruochen, WANG Qinglin, YIN Shangfei, et al. Towards effective depthwise convolutions on ARMv8 architecture[EB/OL]. (2022-06-24)[2023-06-05]. https://doi.org/10.48550/arXiv.2206.12124.
|
29 |
WANG Qinglin, LI Dongsheng, MEI Songzhu, et al. Optimizing one by one direct convolution on ARMv8 multi-core CPUs[C]//2020 IEEE International Conference on Joint Cloud Computing. Oxford, UK: IEEE, 2020: 43-47.
|
30 |
YIN Shangfei, WANG Qinglin, HAO Ruochen, et al. Optimizing irregular-shaped matrix-matrix multiplication on multi-core DSPs[C]//2022 IEEE International Conference on Cluster Computing (CLUSTER). Heidelberg, Germany: IEEE, 2022: 451-461.
|
31 |
裴向东, 王庆林, 廖林玉, 等. 多核数字信号处理器并行矩阵转置算法优化[J]. 国防科技大学学报, 2023, 45 (1): 57- 66.
|
32 |
郭晓威, 李超, 刘杰, 等. 一种高可扩展的通用CFD软件架构设计与原型系统实现[J]. 计算机工程与科学, 2020, 42 (12): 2117- 2124.
DOI
|
33 |
XIAO Tiaojie , WANG Yun , HUANG Xiangyu , et al. Magnetotelluric responses of three-dimensional conductive and magnetic anisotropic anomalies[J]. Geophysical Prospecting, 2020, 68 (3): 1016- 1040.
DOI
|
34 |
肖调杰, 周峰, 郑翾宇, 等. 大规模三维频率域电磁积分方程法数值模拟[J]. 计算机工程与科学, 2023, 45 (11): 1901- 1910.
DOI
|
35 |
陈琳, 肖调杰, 刘剑, 等. 大地电磁一维磁化率、电阻率主轴各向异性正演[J]. 地球物理学进展, 2022, 37 (6): 2373- 2380.
|
36 |
ZHANG Qingyang, XU Lei, CHEN Rongliang, et al. Improving the performance of lattice Boltzmann method with pipelined algorithm on a heterogeneous multi-zone processor[C]//PDCAT 2022: Parallel and Distributed Computing, Applications and Technologies: 23rd International Conference, Sendai, Japan: Springer, 2023: 28-41.
|
37 |
LENG Can, TANG Zhuo, ZHOU Yige, et al. Fifth paradigm in science: A case study of an intelligence-driven material design[J/OL]. Engineering, 2023, 24: 126-137.
|
38 |
YANG Xi , WANG Wei , MA Jinglun , et al. BioNet: A large-scale and heterogeneous biological network model for interaction prediction with graph convolution[J]. Briefings in Bioinformatics, 2022, 23 (1): bbab491.
DOI
|
39 |
WU Chengkun , ZHANG Xiaochen , YANG Zhijiang , et al. Learning to SMILES: BAN-based strategies to improve latent representation learning from molecules[J]. Briefings in Bioinformatics, 2021, 22 (6): bbab327.
DOI
|