计算物理 ›› 2010, Vol. 27 ›› Issue (2): 309-316.

• 论文 • 上一篇    

非线性弦振动方程的Painlevé性质、Bäcklund变换和孤子解的聚变

徐淑奖1, 姜璐2, 郭玉翠3   

  1. 1. 山东省计算中心, 山东 济南 250014;
    2. 南昌工学院, 江西 南昌 330099;
    3. 北京邮电大学理学院, 北京 100876
  • 收稿日期:2008-11-05 修回日期:2009-04-18 出版日期:2010-03-25 发布日期:2010-03-25
  • 作者简介:徐淑奖(1979-),male,Shandong,Assistant Researcher, Research in computer symbolic computing, chaotic cryptography and information security.
  • 基金资助:
    Supported by National Science Foundation of China (Grant No. 60973146);National Science Foundation of Shandong Province,China(Grant No. 2R2009GM036) and Foundation for Study Encouragement to Middel-aged and Young Scientists of Shandong Province,China (Grant No.2008BS01019)

Painlevé Property, Bäcklund Transformation and Soliton Fusion of Nonlinear Vibrating String Equation

XU Shujiang1, JIANG Lu2, GUO Yucui3   

  1. 1. Shandong Computer Science Center, Jinan 250014, China;
    2. Department of Science, Nanchang Institute of Technology, Nanchang 330099, China;
    3. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2008-11-05 Revised:2009-04-18 Online:2010-03-25 Published:2010-03-25
  • Supported by:
    Supported by National Science Foundation of China (Grant No. 60973146);National Science Foundation of Shandong Province,China(Grant No. 2R2009GM036) and Foundation for Study Encouragement to Middel-aged and Young Scientists of Shandong Province,China (Grant No.2008BS01019)

摘要: 借助于计算机符号计算系统Maple,用Weiss,Tabor和Carnevale等人提出的WTC方法首次验证非线性弦振动方程具有Painlevé性质,并得到非线性弦振动方程的Bäcklund变换,用Hirota直接方法分析非线性弦振动方程孤子解的聚变现象.

关键词: Painlevé, 分析, Bä, cklund变换, 孤子聚变, 非线性弦振动方程

Abstract: With WTC algorithm developed by Weiss, Tabor and Carnevale, we concluded that a nonlinear vibrating string equation has Painlevé property. Bäcklund transformation is obtained. Furthermore, soliton fusion is analyzed by means of Hirota's direct method and Bäcklund transformation.

Key words: Painlevé, property, Bäcklund transformation, soliton fusion, nonlinear vibrating string equation

中图分类号: