计算物理 ›› 2012, Vol. 29 ›› Issue (2): 175-182.

• 论文 • 上一篇    下一篇

非线性Schrödinger方程的直接间断Galerkin方法

张荣培1, 蔚喜军2, 赵国忠2   

  1. 1. 辽宁石油化工大学理学院, 抚顺 113001;
    2. 北京应用物理与计算数学研究所 计算物理实验室, 北京 100088
  • 收稿日期:2011-06-01 修回日期:2011-11-11 出版日期:2012-03-25 发布日期:2012-03-25
  • 作者简介:张荣培(1978-),男,博士,讲师,从事计算数学研究,E-mail:rongpeizhang@163.com
  • 基金资助:
    国家自然科学基金(11171038)资助项目

A Direct Discontinuous Galerkin Method for Nonlinear Schrödinger Equation

ZHANG Rongpei1, YU Xijun2, ZHAO Guozhong2   

  1. 1. School of Sciences, Liaoning Shihua University, Fushun 113001, China;
    2. Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • Received:2011-06-01 Revised:2011-11-11 Online:2012-03-25 Published:2012-03-25

摘要: 讨论-维和二维非线性Schrödinger(NLS)方程的数值求解.基于扩散广义黎曼问题的数值流量,构造-种直接间断Galerkin方法(DDG)求解非线性Schrödinger方程.证明该方法L2稳定性,并说明DDG格式是-种守恒的数值格式.对-维NLS方程的计算表明,DDG格式能够模拟各种孤立子形态,而且可以保持长时间的高精度.二维NLS方程的数值结果显示该方法的高精度和捕捉大梯度的能力.

关键词: 非线性Schrö, dinger方程, 直接间断Galerkin方法, 稳定性

Abstract: We discuss numerical simulation of one-and two-dimensional nonlinear Schrödinger (NLS) equations (NLS).With numerical flux of diffusive generalized Riemann problem,a direct discontinuous Galerkin (DDG) method is proposed.L2 stability of the DDG scheme is proved and it is shown that it is a conservative numerical scheme.The one-dimensional case indicates that the DDG scheme simulates various kinds of soliton propagations and it has excellent long-time numerical behaviors.Two-dimensional numerical results demonstrate that the method has high accuracy and is capable of capturing strong gradients.

Key words: nonlinear Schrödinger equation, direct discontinuous Galerkin method, stability

中图分类号: