计算物理 ›› 2021, Vol. 38 ›› Issue (5): 585-594.DOI: 10.19596/j.cnki.1001-246x.8322
所属专题: 多孔介质毛细动力学研究
赵玉龙1(), 周厚杰1, 李洪玺2, 文涛2, 张芮菡1, 张烈辉1
收稿日期:
2020-12-16
出版日期:
2021-09-25
发布日期:
2022-03-24
作者简介:
赵玉龙(1986-),男,湖北仙桃,博士,教授,主要从事非常规油气藏开发、数值模拟、试井分析等研究,E-mail:373104686@qq.com
基金资助:
Yulong ZHAO1(), Houjie ZHOU1, Hongxi LI2, Tao WEN2, Ruihan ZHANG1, Liehui ZHANG1
Received:
2020-12-16
Online:
2021-09-25
Published:
2022-03-24
摘要:
低渗致密砂岩气藏孔喉结构复杂,气水流动及分布规律表征难,常规岩心实验精细刻画困难。基于真实低渗砂岩岩心,利用Micro-CT扫描技术构建储层三维数字岩心,提取连通孔隙结构并建立非结构化四面体网格模型。结合水平集法与N-S方程,建立气水两相流数学模型并利用有限元方法进行求解,研究低渗砂岩气水两相流动中的水驱气过程、残余气分布特征、岩石润湿性对两相流的影响以及并联通道中的窜流特征。结果表明:利用水平集方法能清晰地观察到气水两相分布特征与驱替前缘的运移规律;岩石润湿性对两相流过程影响较大,水湿条件下采出程度更高;并联通道中的窜流现象明显,大通道中水相优先突破并形成优势流动通道,狭小通道中的流动受毛管现象影响,存在较大的附加阻力。
中图分类号:
赵玉龙, 周厚杰, 李洪玺, 文涛, 张芮菡, 张烈辉. 基于水平集方法的低渗砂岩数字岩心气水两相渗流模拟[J]. 计算物理, 2021, 38(5): 585-594.
Yulong ZHAO, Houjie ZHOU, Hongxi LI, Tao WEN, Ruihan ZHANG, Liehui ZHANG. Gas-water Two-phase Flow Simulation of Low-permeability Sandstone Digital Rock: Level-set Method[J]. Chinese Journal of Computational Physics, 2021, 38(5): 585-594.
图1 (a) 低渗砂岩灰度图片;(b)非局部均质滤波法得到的图像;(c)孔隙分割结果(xy平面);(d)连通孔隙空间;(e)表征单元体;(f)非结构化四面体网格;(g)入口分布(紫色面);(h)出口分布(紫色面)
Fig.1 (a)Gray image of low permeability sandstone; (b)Image obtained with non-local-means filter; (c)Pore segmentation results(xy plane); (d)Connected pore space; (e)Representative elementary volume; (f)Unstructured tetrahedral mesh; (g)Inlet; (h)Outlet
图3 驱替前缘的形状随驱替过程的变化(a)凸型驱替前缘(s=5);(b)凹型驱替前缘(s=13)
Fig.3 Shape of the displacement front in the displacement process (a)convex displacement front (s=5);(b)concave displacement front (s=13)
图6 不同润湿角下的水驱气过程模拟(a) θw=30°; (b) θw=60°; (c) θw=90°; (d) θw=120°
Fig.6 Simulation of water drive gas process at different wetting angles (a) θw=30°; (b) θw=60°; (c) θw=90°; (d) θw=120°
1 |
李闽, 蒋琼, 廖志, 等. 水驱气藏采收率计算方法及其影响因素研究[J]. 非常规油气, 2015, 2 (1): 35- 40.
DOI |
2 | LEI Q, ZHANG L H, TANG H M, et al. Describing the full pore size distribution of tight sandstone and analyzing the impact of clay type on pore size distribution[J]. Geofluids, 2020, (3): 1- 20. |
3 |
YANG Y, YANG H, TAO L, et al. Microscopic determination of remaining oil distribution in sandstones with different permeability scales using computed tomography scanning[J]. Journal of Energy Resources Technology, 2019, 141 (9): 092903.
DOI |
4 |
YANG Y, YAO J, WANG C, et al. New pore space characterization method of shale matrix formation by considering organic and inorganic pores[J]. Journal of Natural Gas Science and Engineering, 2015, 27, 496- 503.
DOI |
5 |
LI K, KONG S, XIA P, et al. Microstructural characterisation of organic matter pores in coal-measure shale[J]. Advances in Geo-Energy Research, 2020, 4 (4): 372- 391.
DOI |
6 |
SUN S, ZHANG T. A 6M digital twin for modeling and simulation in subsurface reservoirs[J]. Advances in Geo-Energy Research, 2020, 4 (4): 349- 351.
DOI |
7 |
LIU Z, YANG Y, YAO J, et al. Pore-scale remaining oil distribution under different pore volume water injection based on CT technology[J]. Advances in Geo-Energy Research, 2017, 1 (3): 171- 181.
DOI |
8 |
WANG H, YUAN X, LIANG H, et al. A brief review of the phase-field-based lattice Boltzmann method for multiphase flows[J]. Capillarity, 2019, 2 (3): 33- 52.
DOI |
9 |
YANG Y F, WANG K, ZHANG L, et al. Pore-scale simulation of shale oil flow based on pore network model[J]. Fuel, 2019, 251, 683- 692.
DOI |
10 |
AN S Y, YAO J, YANG Y F, et al. Influence of pore structure parameters on flow characteristics based on a digital rock and the pore network model[J]. Journal of Natural Gas Science and Engineering, 2016, 31, 156- 163.
DOI |
11 |
LI J H, ZHENG B. Digital core and pore network model reconstruction based on random fractal theory[J]. International Journal of Energy and Statistics, 2015, 3 (1): 1550001.
DOI |
12 |
HUANG X, BANDILLA K W, CELIA M A. Multi-physics pore-network modeling of two-phase shale matrix flows[J]. Transport in Porous Media, 2016, 111 (1): 123- 141.
DOI |
13 | 赵玉龙, 刘香禺, 张烈辉, 等. 致密砂岩气藏气水流动规律及储层干化作用机理[J]. 天然气工业, 2020, 40 (9): 70- 79. |
14 |
ZHANG L, KANG Q J, YAO J, et al. Pore scale simulation of liquid and gas two-phase flow based on digital core technology[J]. Science China: Technological Sciences, 2015, 58 (8): 1375- 1384.
DOI |
15 | ZAKIROV T, GALEEV A, KHRAMCHENKOV M. Drainage and impregnation capillary pressure curves calculated by the X-ray CT model of berea sandstone using lattice Boltzmann's method[J]. Earth and Environmental Science, 2017, 155, 19- 23. |
16 | ZHANG N, YAO J, HUANG Z Q, et al. Locally conservative Galerkin numerical simulation for two-phase flow in porous media[J]. Chinese Journal of Computational Physics, 2013, 30 (5): 667- 674. |
17 |
高亚军, 姜汉桥, 王硕亮, 等. 基于Level Set有限元方法的微观水驱油数值模拟[J]. 石油地质与工程, 2016, 30 (5): 91- 142. 91-96, 141-142
DOI |
18 |
ZHU Q L, ZHOU Q L, LI X C. Numerical simulation of displacement characteristics of CO2 injected in pore-scale porous media[J]. Journal of Rock Mechanics and Geotechnical Engi-neering, 2016, 8 (1): 87- 92.
DOI |
19 |
AMIRI H A A, HAMOUDA A A. Pore-scale modeling of non-isothermal two phase flow in 2D porous media: Influences of viscosity, capillarity, wettability and heterogeneity[J]. International Journal of Multiphase Flow, 2014, 61, 14- 27.
DOI |
20 | FENG Q H, ZHAO Y C, WANG S, et al. Pore-scale oil-water two-phase flow simulation based on phase field method[J]. Chinese Journal of Computational Physics, 2020, 37 (4): 439- 447. |
21 | GAO Y J, YANG R L, HUANG L L, et al. Phase field crystal simulation in nano-scale for crack extension with predeformation[J]. Chinese Journal of Computation Physics, 2017, 34 (4): 453- 460. |
22 | QASEMINEJAD R A. Modelling multiphase flow through micro-CT image of the pore space[D]. London: Imperial College London, 2013, 135. |
23 | 李昂, 于浩波, 谢斌, 等. 基于有限体积法的致密油储层数字岩心中流动与传热研究[J]. 测井技术, 2017, 41 (2): 135- 140. |
24 | 朱洪林. 低渗砂岩储层孔隙结构表征及应用研究[D]. 成都: 西南石油大学, 2014. |
25 | 刘向君, 熊健, 梁利喜, 等. 基于微CT技术的致密砂岩孔隙结构特征及其对流体流动的影响[J]. 地球物理学进展, 2017, 32 (3): 1019- 1028. |
26 |
OLSSON E, KREISS G. A conservative level set method for two phase flow[J]. Journal of Computational Physics, 2005, 210 (1): 225- 246.
DOI |
27 |
ROY S, RAJU R, CHUANG H F, et al. Modeling gas flow through microchannels and nanopores[J]. Journal of Applied Physics, 2003, 93 (8): 4870- 4879.
DOI |
28 |
COLIN S. Rarefaction and compressibility effects on steady and transient gas flows in micro-channels[J]. Microfluidics and Nanofluidics, 2005, 1 (3): 268- 279.
DOI |
29 |
OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79 (1): 12- 49.
DOI |
30 |
OLSSON E, KREISS G, ZAHEDI S. A conservative level set method for two phase flow Ⅱ[J]. Journal of Computational Physics, 2007, 225 (1): 785- 807.
DOI |
31 | SUSSMAN M, ALMGREN A S, BELL J B, et al. An adaptive level set approach for incompressible two-phase flows[J]. J Comput Phys, 1997, 148 (1): 81- 124. |
32 |
SHEPEL S V, SMITH B L. New finite-element/finite-volume level set formulation for modeling two-phase incompressible flows[J]. Journal of Computational Physics, 2006, 218 (2): 479- 494.
DOI |
33 |
LI B, LIU Q S, XU J W, et al. A new method for removing mixed noises[J]. Science in China Series F: Information Sciences, 2011, 54 (1): 51- 59.
DOI |
34 |
王平全, 陶鹏, 刘建仪, 等. 基于数字岩心的低渗透储层微观渗流机理研究[J]. 非常规油气, 2016, 3 (6): 1- 5.
DOI |
[1] | 郑江韬, 贾宁洪, 胡慧芳, 杨勇, 鞠杨, 王沫然. 分支通道内液-液自发渗吸规律研究[J]. 计算物理, 2021, 38(5): 543-554. |
[2] | 魏祥祥, 冯其红, 张先敏, 黄迎松, 刘丽杰. 基于VOF方法的水驱油藏孔隙尺度剩余油分布状态研究[J]. 计算物理, 2021, 38(5): 573-584. |
[3] | 曹仁义, 黄涛, 程林松, 高占武, 贾志豪. 水驱油藏中原油极性物质对吸附和润湿性影响的分子模拟[J]. 计算物理, 2021, 38(5): 595-602. |
[4] | 阿湖宝, 杨志兵, 胡冉, 陈益峰. 纳米尺度下毛细流动的分子动力学模拟[J]. 计算物理, 2021, 38(5): 603-611. |
[5] | 王智, 邹高域, 宫敬, 白剑锋, 翟博文. 一维双流体模型的压力修正算法[J]. 计算物理, 2019, 36(4): 413-420. |
[6] | 柴汝宽, 刘月田, 王俊强, 辛晶, 皮建, 李长勇. 分子动力学模拟方解石和白云石润湿性[J]. 计算物理, 2019, 36(4): 474-482. |
[7] | 张珑慧, 由长福. 基于有限体积虚拟区域方法的两相流动直接模拟[J]. 计算物理, 2019, 36(3): 291-297. |
[8] | 卢敏, 董博恒, 张莹, 曾良, 林祥权, 杜鹏. 气泡在内置交错矩形肋管道中自由上升的FTM直接数值模拟[J]. 计算物理, 2018, 35(1): 47-54. |
[9] | 段茂昌, 蔚喜军, 陈大伟, 黄朝宝, 安娜. DG方法求解可压缩气固两相流动[J]. 计算物理, 2017, 34(6): 631-640. |
[10] | 薛社生, 徐明. 碰撞聚合引起液滴数目变化的生灭过程模型[J]. 计算物理, 2016, 33(2): 177-182. |
[11] | 郭虹平, 欧阳洁. 气液两相流的间断有限元模拟[J]. 计算物理, 2015, 32(2): 160-168. |
[12] | 孙静静, 黄朝琴, 姚军, 李爱芬, 王代刚. 基于离散裂缝模型的低渗透油藏开发数值模拟[J]. 计算物理, 2015, 32(2): 177-185. |
[13] | 田辉, 李国君. 改进粒子水平集法及其应用[J]. 计算物理, 2013, 30(6): 833-842. |
[14] | 黄荣宗, 王亮, 郭照立. 格子Boltzmann方法中三种流固耦合格式的对比[J]. 计算物理, 2012, 29(6): 799-806. |
[15] | 刘训良, 楼国锋, 温治. 直流道PEMFC两相流数学模型[J]. 计算物理, 2012, 29(6): 815-822. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发