计算物理 ›› 2021, Vol. 38 ›› Issue (5): 603-611.DOI: 10.19596/j.cnki.1001-246x.8366
所属专题: 多孔介质毛细动力学研究
阿湖宝1,2, 杨志兵1,2,*(), 胡冉1,2, 陈益峰1,2
收稿日期:
2021-03-30
出版日期:
2021-09-25
发布日期:
2022-03-24
通讯作者:
杨志兵
作者简介:
阿湖宝,博士研究生,主要从事纳米孔隙表面润湿与多相渗流研究
基金资助:
Hubao A1,2, Zhibing YANG1,2,*(), Ran HU1,2, Yifeng CHEN1,2
Received:
2021-03-30
Online:
2021-09-25
Published:
2022-03-24
Contact:
Zhibing YANG
摘要:
采用分子动力学模拟研究纳米尺度下壁面润湿性对毛细流动的影响,主要考虑纳米通道两侧壁面润湿性相同与不同两种情况。研究表明:两侧壁面润湿性相同条件下,毛细流动随着壁面润湿性增强而加快, 毛细高度随时间的变化早期偏离Lucas-Washburn理论,但后期与其预测符合。在纳米通道两侧壁面润湿性不同的情况下,液面会发生振荡,两侧壁面毛细高度也不相等,且液面振荡的幅度和两侧壁面毛细高度差都随着两侧壁面润湿性差异的增大而增大。基于能量转化分析,提出两侧壁面湿润性不同情况下纳米通道中毛细流动发生的条件以及毛细流动快慢的判别依据。研究结果加深了对纳米尺度下毛细流动机理的认识,并为相关工程应用提供理论参考。
中图分类号:
阿湖宝, 杨志兵, 胡冉, 陈益峰. 纳米尺度下毛细流动的分子动力学模拟[J]. 计算物理, 2021, 38(5): 603-611.
Hubao A, Zhibing YANG, Ran HU, Yifeng CHEN. Molecular Dynamics Simulations of Capillary Dynamics at the Nanoscale[J]. Chinese Journal of Computational Physics, 2021, 38(5): 603-611.
组别 | 算例 | 壁面 | εS-L/(kcal·mol-1) | θS/(°) | cos θS | ∑cos θS | Δ cos θS |
1 | 1 | 下壁面 | 0.466 2 | 76.90 | 0.23 | 0.45 | 0.00 |
上壁面 | 0.466 2 | 76.90 | 0.23 | ||||
2 | 下壁面 | 0.543 9 | 56.80 | 0.55 | 1.10 | ||
上壁面 | 0.543 9 | 56.80 | 0.55 | ||||
3 | 下壁面 | 0.582 8 | 43.12 | 0.73 | 1.46 | ||
上壁面 | 0.582 8 | 43.12 | 0.73 | ||||
4 | 下壁面 | 0.637 1 | 30.18 | 0.86 | 1.73 | ||
上壁面 | 0.637 1 | 30.18 | 0.86 | ||||
2 | 5 | 下壁面 | 0.155 4 | 135.41 | -0.71 | 0.15 | 1.58 |
上壁面 | 0.637 1 | 30.18 | 0.86 | ||||
6 | 下壁面 | 0.466 2 | 76.90 | 0.23 | 1.09 | 0.64 | |
上壁面 | 0.637 1 | 30.18 | 0.86 | ||||
7 | 下壁面 | 0.543 9 | 56.80 | 0.55 | 1.41 | 0.32 | |
上壁面 | 0.637 1 | 30.18 | 0.86 | ||||
8 | 下壁面 | 0.310 8 | 105.26 | -0.26 | -0.04 | 0.49 | |
上壁面 | 0.466 2 | 76.90 | 0.23 |
表1 模拟纳米通道中毛细流动时采用的参数
Table 1 Parameters used in simulating capillary imbibition process
组别 | 算例 | 壁面 | εS-L/(kcal·mol-1) | θS/(°) | cos θS | ∑cos θS | Δ cos θS |
1 | 1 | 下壁面 | 0.466 2 | 76.90 | 0.23 | 0.45 | 0.00 |
上壁面 | 0.466 2 | 76.90 | 0.23 | ||||
2 | 下壁面 | 0.543 9 | 56.80 | 0.55 | 1.10 | ||
上壁面 | 0.543 9 | 56.80 | 0.55 | ||||
3 | 下壁面 | 0.582 8 | 43.12 | 0.73 | 1.46 | ||
上壁面 | 0.582 8 | 43.12 | 0.73 | ||||
4 | 下壁面 | 0.637 1 | 30.18 | 0.86 | 1.73 | ||
上壁面 | 0.637 1 | 30.18 | 0.86 | ||||
2 | 5 | 下壁面 | 0.155 4 | 135.41 | -0.71 | 0.15 | 1.58 |
上壁面 | 0.637 1 | 30.18 | 0.86 | ||||
6 | 下壁面 | 0.466 2 | 76.90 | 0.23 | 1.09 | 0.64 | |
上壁面 | 0.637 1 | 30.18 | 0.86 | ||||
7 | 下壁面 | 0.543 9 | 56.80 | 0.55 | 1.41 | 0.32 | |
上壁面 | 0.637 1 | 30.18 | 0.86 | ||||
8 | 下壁面 | 0.310 8 | 105.26 | -0.26 | -0.04 | 0.49 | |
上壁面 | 0.466 2 | 76.90 | 0.23 |
图3 纳米通道两侧壁面润湿性相同时毛细高度h随时间t的变化 (插图(a)为t=0.1~1 ns内h变化的双对数曲线,(b)和(c)分别是算例2和算例3中t=10 ns时模拟体系的构型。)
Fig.3 Evolution of the imbibition length h as wettability of the two sidewalls is the same (Inset (a) shows the early evolution of h in the log-log scale; Insets (b) and (c) are snapshots of the simulation system at t=10 ns in Cases 2 and 3, respectively.)
图4 纳米通道两侧壁面润湿性不同时毛细高度hU、hL随时间t的变化
Fig.4 Evolution of the capillary imbibition length (hU and hL) on sidewalls of a nanochannel as wettability of the two sidewalls is different
图5 纳米通道两侧壁面润湿性不同时两侧壁面毛细高度差(hU- hL)和润湿性差异Δ cos θS间的关系 (插图(a)、(b)和(c)分别为算例5、6和7中t=10 ns时模拟体系的构型。)
Fig.5 Relation between (hU- hL) and Δ cos θS (Insets (a), (b) and (c) show snapshots of the simulation system at t=10 ns in Cases 5, 6 and 7, respectively.)
1 | ZHANG L, YU X, CHEN Z, et al. Capillary dynamics of confined water in nanopores: The impact of precursor films[J]. Chemical Engineering Journal, 2021, 409 (3): 128113. |
2 |
FERNANDEZ-TOLEDANO J C, BLAKE T D, DE CONINCK J. Taking a closer look: A molecular-dynamics investigation of microscopic and apparent dynamic contact angles[J]. Journal of Colloid and Interface Science, 2021, 587, 311- 323.
DOI |
3 |
HOU D, ZHANG W, SUN M, et al. Modified Lucas-Washburn function of capillary transport in the calcium silicate hydrate gel pore: A coarse-grained molecular dynamics study[J]. Cement and Concrete Research, 2020, 136, 106166.
DOI |
4 |
CHU K C, TSAO H K, SHENG Y J. Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn's equation and extended menisci[J]. Journal of Colloid and Interface Science, 2019, 538, 340- 348.
DOI |
5 |
OYARZUA E, WALTHER J H, MEJIA A, et al. Early regimes of water capillary flow in slit silica nanochannels[J]. Physical Chemistry Chemical Physics, 2015, 17 (22): 14731- 14739.
DOI |
6 |
QUÉRÉ D. Inertial capillarity[J]. Europhysics Letters, 1997, 39 (5): 533- 538.
DOI |
7 |
KARNA N K, OYARZUA E, WALTHER J H, et al. Effect of the meniscus contact angle during early regimes of spontaneous imbibition in nanochannels[J]. Physical Chemistry Chemical Physics, 2016, 18 (47): 31997- 32001.
DOI |
8 |
VAN HONSCHOTEN J W, BRUNETS N, TAS N R. Capillarity at the nanoscale[J]. Chemical Society Reviews, 2010, 39 (3): 1096- 1114.
DOI |
9 | DUAN X M, GONG X G. Trapping of hyperthermal particles: A molecular dynamics simulation[J]. Chinese Journal of Computational Physics, 2000, 17 (6): 641- 644. |
10 | CHAI R, LIU Y, WANG J, et al. Molecular dynamics simulation of wettability of calcite and dolomite[J]. Chinese Journal of Computational Physics, 2019, 36 (4): 474- 482. |
11 | LU M, LIU W, LUO F, et al. Molecular dynamics study on structural stability of Ag nanorods with crystallographic orientation[1 1 1 ][J]. Chinese Journal of Computational Physics, 2009, 26 (1): 121- 128. |
12 |
WANG F, ZHANG Y, JIANG J, et al. Effect of temperature on the capillary transport of sodium sulfate solution in calcium silicate hydrate nanopore: A molecular dynamics study[J]. Construction and Building Materials, 2020, 231, 117111.
DOI |
13 |
HULIKAL CHAKRAPANI T, DEN OTTER W K. Capillary imbibition of binary fluid mixtures in nanochannels[J]. Langmuir, 2020, 36 (42): 12712- 12722.
DOI |
14 |
FERNANDEZ-TOLEDANO J C, RIGAUT C, MASTRANGELI M, et al. Controlling the pinning time of a receding contact line under forced wetting conditions[J]. Journal of Colloid and Interface Science, 2020, 565, 449- 457.
DOI |
15 |
A H, YANG Z, HU R, et al. Effect of solid-liquid interactions on substrate wettability and dynamic spreading of nanodroplets: A molecular dynamics study[J]. Journal of Physical Chemistry C, 2020, 124 (42): 23260- 23269.
DOI |
16 |
MOLINERO V, MOORE E B. Water modeled as an intermediate element between carbon and silicon[J]. Journal of Physical Chemistry B, 2009, 113 (13): 4008- 4016.
DOI |
17 |
ZHANG J, BORG M K, SEFIANE K, et al. Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation[J]. Physical Review E, 2015, 92 (5): 052403.
DOI |
18 |
YUAN Q Z, ZHAO Y P. Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface[J]. Journal of Fluid Mechanics, 2013, 716, 171- 188.
DOI |
19 |
LI X H, ZHANG X X, CHEN M. Estimation of viscous dissipation in nanodroplet impact and spreading[J]. Physics of Fluids, 2015, 27 (5): 052007.
DOI |
20 |
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117 (1): 1- 19.
DOI |
21 |
FAN J, DE CONINCK J, WU H, et al. A generalized examination of capillary force balance at contact line: On rough surfaces or in two-liquid systems[J]. Journal of Colloid and Interface Science, 2021, 585, 320- 327.
DOI |
22 | ZHANG H, YIN X. Molecular dynamics study on growth mechanism of pure metals solid-liquid interface during solidification[J]. Chinese Journal of Computational Physics, 2019, 36 (1): 80- 88. |
23 | LIANG H, LI M. Molecular dynamics study of mechanical properties of single crystal aluminum with voids and vacancies[J]. Chinese Journal of Computational Physics, 2019, 36 (2): 211- 218. |
24 |
STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18 (1): 015012.
DOI |
25 |
WOLF F G, DOS SANTOS L O, PHILIPPI P C. Capillary rise between parallel plates under dynamic conditions[J]. Journal of Colloid and Interface Science, 2010, 344 (1): 171- 179.
DOI |
26 |
FERNANDEZ-TOLEDANO J C, BLAKE T D, DE CONINCK J. Contact-line fluctuations and dynamic wetting[J]. Journal of Colloid and Interface Science, 2019, 540, 322- 329.
DOI |
27 |
AHADIAN S, MIZUSEKI H, KAWAZOE Y. On the kinetics of the capillary imbibition of a simple fluid through a designed nanochannel using the molecular dynamics simulation approach[J]. Journal of Colloid and Interface Science, 2010, 352 (2): 566- 572.
DOI |
28 |
MARTIC G, GENTNER F, SEVENO D, et al. A molecular dynamics simulation of capillary imbibition[J]. Langmuir, 2002, 18 (21): 7971- 7976.
DOI |
[1] | 侯兆阳, 牛媛, 肖启鑫, 王真, 邓庆田. Al纳米线不同晶向力学行为和变形机制的模拟[J]. 计算物理, 2022, 39(3): 341-351. |
[2] | 赵玉龙, 周厚杰, 李洪玺, 文涛, 张芮菡, 张烈辉. 基于水平集方法的低渗砂岩数字岩心气水两相渗流模拟[J]. 计算物理, 2021, 38(5): 585-594. |
[3] | 曹仁义, 黄涛, 程林松, 高占武, 贾志豪. 水驱油藏中原油极性物质对吸附和润湿性影响的分子模拟[J]. 计算物理, 2021, 38(5): 595-602. |
[4] | 王国华, 崔雅茹, 杨泽, 李小明, 汤宏亮, 杨树峰. FexO-SiO2-CaO-MgO-“NiO”系镍渣势函数及分子动力学模拟[J]. 计算物理, 2021, 38(2): 215-223. |
[5] | 和二斌, 罗志荣, 朱留华. 肌红蛋白力致去折叠的全原子分析[J]. 计算物理, 2020, 37(2): 205-211. |
[6] | 周璐, 马红和. 超临界水中硫酸钠结晶动力学的分子动力学模拟[J]. 计算物理, 2020, 37(2): 212-220. |
[7] | 史晓蕊, 刘振宇, 吴慧英. 纳米孔壁面作用对蛋白质过孔影响的粗粒化分子动力学模拟[J]. 计算物理, 2020, 37(1): 63-68. |
[8] | 柴汝宽, 刘月田, 王俊强, 辛晶, 皮建, 李长勇. 分子动力学模拟方解石和白云石润湿性[J]. 计算物理, 2019, 36(4): 474-482. |
[9] | 梁华, 李茂生. 孔洞和空位对单晶铝力学性能影响的分子动力学研究[J]. 计算物理, 2019, 36(2): 211-218. |
[10] | 张海燕, 殷新春. 简单金属固液界面固化过程生长机制的分子动力学研究[J]. 计算物理, 2019, 36(1): 80-88. |
[11] | 祁美玲, 杨琼, 王苍龙, 田园, 杨磊. 结构材料辐照损伤的分子动力学程序GPU并行化及优化[J]. 计算物理, 2017, 34(4): 461-467. |
[12] | 邹济杭, 叶振强, 曹炳阳. 势能模型对石墨烯导热性质分子动力学模拟的影响[J]. 计算物理, 2017, 34(2): 221-229. |
[13] | 刘冰, 史俊勤, 沈跃, 张军. 石墨狭缝中甲烷吸附的分子动力学模拟[J]. 计算物理, 2013, 30(5): 692-699. |
[14] | 段芳莉, 郭其超. 纳米接触行为的三维多尺度数值模拟[J]. 计算物理, 2012, 29(5): 753-758. |
[15] | 段芳莉, 颜世铛. 半晶态聚合物的分子动力学模拟[J]. 计算物理, 2012, 29(5): 759-765. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发