[1] HELEN M, ZHAOKUN Z, JACK S, et al. Single-molecule techniques in biophysics:A review of the progress in methods and applications[J]. Reports on Progress in Physics, 2018, 81(2):024601. [2] WADUGE P, HU R, BANDARKAR P, et al. Nanopore-based measurements of protein size, fluctuations, and conformational changes[J]. ACS Nano, 2017, 11(6):5706-5716. [3] ZHOU D, ZHAO Y, TIAN E, et al. Slowing down DNA translocation speed thorough a nanopore by a nanofibre meshed layer[J]. Biophysical Journal, 2018, 114(3, Supplement 1):180a. [4] VENTA K, SHEMER G, PUSTER M, et al. Differentiation of short single-stranded DNA homopolymers in solid-state nanopores[J]. ACS Nano, 2013, 7(5):4629-4636. [5] PLESA C, KOWALCZYK S W, ZINSMEESTER R, et al. Fast translocation of proteins through solid state nanopores[J]. Nano Letters, 2013, 13(2):658-663. [6] MELILLO M, ZHU F, SNYDER M A, et al. Water transport through nanotubes with varying interaction strength between tube wall and water[J]. Journal of Physical Chemistry Letters, 2011, 2(23):2978-2983. [7] WILSON J, AKSIMENTIEV A. Water-compression gating of nanopore transport[J]. Physical Review Letters, 2018, 120(26):268101. [8] SHAN Y P, TIWARI P B, KRISHNAKUMAR P, et al. Surface modification of graphene nanopores for protein translocation[J]. Nanotechnology, 2013, 24(49):495102. [9] YUSKO E C, JOHNSON J M, MAJD S, et al. Controlling protein translocation through nanopores with bio-inspired fluid walls[J]. Nature Nanotechnology, 2011, 6(4):253-260. [10] GAURAV G, YONG BOK L, ARMIN D, et al. Hydrophilic and size-controlled graphene nanopores for protein detection[J]. Nanotechnology, 2016, 27(49):495301. [11] PEN B, LI H, LU B. Electrostatic calculation in biomolecular modeling[J]. Chinese Journal of Computational Physics, 2015, 32(2):127-159. [12] CHAI R, LIU Y, WANG J, et al. Molecular dynamics simulation of the wetting characteristics of calcite and dolomite[J]. Chinese Journal of Computational Physics, 2019, 36(4):474-482. [13] LI Y, FENG G, DUAN L. Application of protein-specific polarized charge on HIV-1 protease-inhibitor binding free enengy[J]. Chinese Journal of Computational Physics, 2018, 35(3):330-334. [14] ZOU J, YE Z, CAO B. Effects of potential models on thermal properties of graphene in molecular dynamics simulations[J]. Chinese Journal of Computational Physics, 2017, 34(2):221-229. [15] CHEN H, LI L, ZHANG T. Protein translocation through a MoS2 nanopore:A molecular dynamics study[J]. The Journal of Physical Chemistry C, 2018, 122(4):2070-2080. [16] RESTREPO-PéREZ L, JOHN S, AKSIMENTIEV A, et al. SDS-assisted protein transport through solid-state nanopores[J]. Nanoscale, 2017, 9(32):11685-11693. [17] AMMENTI A, CECCONI F, MARINI BETTOLO MARCONI U, et al. A statistical model for translocation of structured polypeptide chains through nanopores[J]. The Journal of Physical Chemistry B, 2009, 113(30):10348-10356. [18] JOU I, MUTHUKUMAR M. Effects of nanopore charge decorations on the translocation dynamics of DNA[J]. Biophysical Journal, 2017, 113(8):1664-1672. [19] DE JONG D H, SINGH G, BENNETT W F D, et al. Improved parameters for the Martini coarse-grained protein force field[J]. Journal of Chemical Theory and Computation, 2013, 9(1):687-697. [20] 武灵芝, 刘玉棋, 刘伟, 等. 蛋白质在固态纳米孔中的易位行为[J]. 生物物理学报, 2014, 30(5):360-368. |