[1] SHEN Y, CHONG J, HUANG Z, et al. Viscosity and structure of a CaO-SiO2-FeO-MgO system during a modified process from nickel slag by CaO[J]. Materials, 2019, 12(16):2562. [2] HUANG F, LIAO Y, ZHOU J, et al. Selective recovery of valuable metals from nickel converter slag at elevated temperature with sulfuric acid solution[J]. Separation and Purification Technology, 2015, 156:572-581. [3] MINOVICH A K. The studies on nickel concentrate production from metallurgical products slag[J]. Medycyna Doswiadczalna I Mikrobiologia, 2013, 15(1):263-272. [4] ZHAO J, ZHAO Z, CUI Y, et al. New slag for nickel matte smelting process and subsequent Fe extraction[J]. Metallurgical Materials Transactions B, 2018, 49(1):304-310. [5] DAI X, BAI J, LI D T, et al. Experimental and theoretical investigation on relationship between structures of coal ash and its fusibility for Al2O3-SiO2-CaO-FeO system[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6):641-648. [6] DENG L B, ZHANG X F, ZHANG M X, et al. Effect of CaF2 on viscosity, structure and properties of CaO-Al2O3-MgO-SiO2 slag glass ceramics[J]. Journal of Non-Crystalline Solids, 2018, 500:310-316. [7] SIAKATI C, MACCHIERALDO R, KIRCHNER B, et al. Unraveling the nano-structure of a glassy CaO-FeO-SiO2 slag by molecular dynamics simulations[J]. Journal of Non-Crystalline Solids, 2020, 528:119771. [8] LIANG D, YAN Z M, LV X W, et al. Transition of blast furnace slag from silicate-based to aluminate-based:Structure evolution by molecular dynamics simulation and Raman spectroscopy[J]. Metallurgical Materials Transactions B, 2017, 48(1):573-581. [9] ZHANG S F, ZHANG X, PENG H J, et al. Structure analysis of CaO-SiO2-Al2O3-TiO2 slag by molecular dynamics simulation and FT-IR spectroscopy[J]. ISIJ International, 2014, 54(4):734-742. [10] ZHANG H Y, YIN X C. Molecular dynamics study on growth mechanism of pure metals solid-liquid interface during solidifica[J]. Chinese Journal of Computational Physics, 2019, 36(1):80-88. [11] WU Y N, WANG L P, ZHU Y Q, et al. Structure of liquid aluminum oxide:A molecular dynamics study[J]. Chinese Journal of Computational Physics, 2011, 28(2):289-294. [12] CHAI R K, LIU Y T, WANG J Q, et al. Molecular dynamics simulation of wettability of calcite and dolomite[J]. Chinese Journal of Computational Physics, 2019, 36(4):474-482. [13] 佟志芳, 肖成, 魏战龙. 分子动力学模拟及其在冶金炉渣中的应用研究[J]. 有色金属科学与工程, 2016, 7(3):15-20. [14] 王浩男, 玄伟伟, 夏德宏. 不同温度下煤灰熔渣的结构演变规律[J]. 化工学报, 2019, 70(8):3094-3103. [15] WU T, WANG Q, YU C F, et al. Structural and viscosity properties of CaO-SiO2-Al2O3-FeO slags based on molecular dynamic simulation[J]. Journal of Non-Crystalline Solids, 2016, 450:23-31. [16] JIANG C H, ZHANG H X, XIONG Z, et al. Molecular dynamics investigations on the effect of Na2O on the structure and properties of blast furnace slag under different basicity conditions[J]. Journal of Molecular Liquids, 2019:112195. [17] JIANG C H, LI K, ZHANG J L, et al. Effect of MgO/Al2O3 ratio on the structure and properties of blast furnace slags:A molecular dynamics simulation[J]. Journal of Non-Crystalline Solids, 2018, 502:76-82. [18] 曾勇平, 朱晓敏, 杨正华. 水、甲醇和乙醇液体微结构性质的Car-Parrinello分子动力学模拟[J]. 物理化学学报, 2011, 27(12):2779-2785. [19] JIA B R, LI M, YAN X B, et al. Structure investigation of CaO-SiO2-Al2O3-Li2O by molecular dynamics simulation and Raman spectroscopy[J]. Journal of Non-Crystalline Solids, 2019, 526:119695. [20] NIE X H, DU Z Y, ZHAO L, et al. Molecular dynamics study on transport properties of supercritical working fluids:Literature review and case study[J]. Applied Energy, 2019, 250:63-80. [21] EVANS R. The interpretation of small molecule diffusion coefficients:Quantitative use of diffusion-ordered NMR spectroscopy[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2019. |