[1] RODWAY G H, HUNT J D. Thermoelectric investigation of solidification of lead I:Pure lead[J]. J Crys Grow, 1991, 112(2-3):554-562. [2] KITTL J A, AZIZ M J, et al. Nonequilibrium partitioning during rapid solidification of Si-As alloys[J]. J Crys Grow, 1995, 148(1-2):172-182. [3] KITTL J A, SANDERS P G, et al. Complete experimental test of kinetic models for rapid alloy solidification[J]. Acta Mater, 2000, 48(20):4797-4811. [4] DAVIDCHACK R L, LAIRD B B. Direct calculation of the crystal-melt interfacial free energies for continuous potentials:Application to the Lennard-Jones system[J]. J Chem Phys, 2003, 118(16):7651-7657. [5] HOYT J J, KARMA A, et al. From atoms to dendrites(overview)[J]. JOM, 2004, 56(4):49-54. [6] SUN D Y, ASTA M, HOYT J J. Crystal-melt interfacial free energies and mobilities in fcc and bcc Fe[J]. Phys Rev B, 2004, 69(69):1324-1332. [7] SUN D Y, ASTA M, et al. Crystal-melt interfacial free energies in metals:fcc versus bcc[J]. Phys Rev B, 2004, 69(2):1129-1133. [8] DAVIDCHACK R L, LAIRD B B. Crystal structure and interaction dependence of the crystal-melt interfacial free energy[J]. Phys Rev Lett, 2005, 94(8):086102. [9] TAN J H, ZHU K J, PENG J H. First-principles simulation on structure-property of Ti-Al intermetallic compounds[J]. Chinese J Comput Phys, 2017, 34(3):365:373. [10] GU T K, QI Y H, QIN J Y. Molecular dynamics simulations of solidification of liquid Ni3Al[J]. Chinese J Comput Phys, 2001, 18(1):67-71. [11] ASHKENAZY Y, AVERBACK R S. Atomic mechanisms controlling crystallization behaviour in metals at deep undercoolings[J]. Europhys Lett, 2007, 79(2):26005. [12] HUITEMA H E A, VLOT M J, EERDEN J P V D. Simulations of crystal growth from lennard-jones melt:Detailed measurements of the interface structure[J]. J Chem Phys, 1999, 111(10):4714-4723. [13] TEPPER H L, BRIELS W J. Crystallization and melting in the Lennard-Jones system:Equilibration, relaxation, and long-time dynamics of the moving interface[J]. J Chem Phys, 2001, 115(20):9434-9443. [14] TEPPER H L, BRIELS W J. Crystal growth and interface relaxation rates from fluctuations in an equilibrium simulation of the Lennard-Jones (100) crystal-melt system[J]. J Chem Phys, 2002, 116(12):5186-5195. [15] AMINI M, LAIRD B B. Kinetic coefficient for hard-sphere crystal growth from the melt[J]. Phys Rev Lett, 2006, 97(21):216102. [16] HOYT J J, ASTA M, SUN D Y. Molecular dynamics simulations of the crystalmelt interfacial free energy and mobility in Mo and V[J]. Philos Mag, 2006, 86(24):3651-3664. [17] MIKHEEV L V, CHERNOV A A. Mobility of a diffuse simple crystal-melt interface[J]. J Crys Grow, 1991, 112(2-3):591-596. [18] CORIELL S R, TURNBULL D. Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts[J]. Acta Metall, 1982, 30(12):2135-2139. [19] MACDONALD C A, MALVEZZI A M, SPAEPEN F. Picosecond time-resolved measurements of crystallization in noble metals[J]. J Appl Phys, 1989, 65(1):129-136. [20] CHAN W L, AVERBACK R S, et al. Solidification velocities in deeply undercooled silver[J]. Phys Rev Lett, 2009, 102(9):095701. [21] ASHKENAZY Y, AVERBACK R S. Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals[J]. Acta Mater, 2010, 58(2):524-530. [22] YAN C. Molecular dynamics simulation of energetic deposition on Pt(111) surface with oblique Ni atom bombardment[J]. Chinese J Comput Phys, 2011, 28(5):767-772. [23] FOILE S M, BASKES M I, DAW M S. Embedded-atom-method functions for the fcc metals Cu,Ag, Au, Ni, Pd, Pt, and their alloys[J]. Phys Rev B, 1986, 33(12):7983-7991. [24] ERCOKESSI F M, ADAMS J B. Interatomic potentials from first-principles calculations:The force-matching method[J]. Europhys Lett, 1994, 26(583). [25] CHEN S D, KE F J, et al. Atomistic investigation of the effects of temperature and surface roughness on diffusion bonding between Cu and Al[J]. Acta Mater, 2007, 55:3169-3175. [26] WILSON S R, GUNAWARDANA K G S H, MENDELEV M I. Solid-liquid interface free energies of pure bcc metals and B2 phases[J]. J Chem Phys, 2015, 142(134705):1-12. [27] WILSON S R, MENDELEV M I. A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals[J]. J Chem Phys, 2016, 144(144707):1-8. [28] FANG T, WANG L, QI Y. Molecular dynamics simulation of crystal growth of undercooled liquid Co[J]. Phys B, 2013, 423:6-9. [29] TURLO V, POLITANO O, BARAS F. Dissolution process at solid/liquid interface in nanometric metallic multilayers:Molecular dynamics simulations versus diffusion modeling[J]. Acta Mater, 2015, 99:363-372. [30] RAMAKRISHNAN R, SANKARASUBRAMANIAN R. Crystal-melt kinetic coefficients of Ni3Al[J]. Acta Mater, 2017, 127:25-32. [31] KONG Y, HUANG Y C, et al. Lattice dynamics of body-centered cubic transition metals with analytic EAM interatomic potentials[J]. Chinese J Comput Phys, 2003, 20(4):363-368. [32] DAW M S, BASKES M I. Embedded-atom method:Derivation and application to impurities, surfaces, and other defects in metals[J]. Phys Rev B, 1984, 29(12):6443-6453. [33] DAW M S, FOILES S M, BASKES M I. The embedded-atom method:A review of theory and applications[J]. Mater Sci Rep, 1993, 9(7-8):251-310. [34] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys, 1995, 117(1):1-19. [35] SUN D Y, ASTA M, HOYT J J. Kinetic coefficient of Ni solid-liquid interfaces from molecular-dynamics simulations[J]. Phys Rev B, 2004, 69(69):1129-1133. [36] HOYT J J, ASTA M, KARMA A. Method for computing the anisotropy of the solid-liquid interfacial free energy[J]. Phys Rev Lett, 2001, 86(24):5530-5533. [37] FRENKEL J I. Kinetic theory of liquids[M]. Oxford, London:Oxford University Press, 1946, 357. [38] WILSON H W. On the velocity of solidification and viscosity of supercooled liquids[J]. Philos Mag, 1900, 50:238-250. [39] BROUGHTON J Q, GILMER G H, JACKSON K A. Crystallization rates of a Lennard-Jones liquid[J]. Phys Rev Lett, 1982, 49(20):1496-1500. [40] OVRUTSKY A M, PROKHODA A S, KUSHNEROV O I. The Growth kinetics of metallic crystals:Results of simulations[J]. 2013, 21(2):123-128. [41] OVRUTSKY A M, PROKHODA A S. Peculiarities of crystallization at high undercooling:Analysis of the simulation data for aluminum[J]. J Crys Grow, 2011, 314:258-263. [42] ARRHENIUS G, BACHMAN J, et al. Anion selective minerals as concentrators and catalysts for RNA precursor components[J]. Orig Life Evol Biosph, 1989, 19(3):235-236. [43] TYMCZAK C J, RAY J R. Asymmetric crystallization and melting kinetics in sodium:A molecular-dynamics study[J]. Phys Rev Lett, 1990, 64(11):1278-1281. [44] WILLIAMS T, KELLEY C. Gnuplot 4.6:An interactive plotting program[J/OL].[2017-12-18]. http://gnuplot.sourceforge.net/docs_4.6/gnuplot.pdf. [45] ZHANG H Y, LIU F, et al. The molecular dynamics study of vacancy formation during solidification of pure metals[J]. Scientific Reports, 2017, 7(1):10241. |