计算物理 ›› 2022, Vol. 39 ›› Issue (3): 341-351.DOI: 10.19596/j.cnki.1001-246x.8433
收稿日期:
2021-08-12
出版日期:
2022-05-25
发布日期:
2022-09-02
作者简介:
侯兆阳(1980-),男,教授,主要从事微纳材料相变和变形机制的模拟研究,E-mail: zhaoyanghou@163.com
基金资助:
Zhaoyang HOU(), Yuan NIU, Qixin XIAO, Zhen WANG, Qingtian DENG
Received:
2021-08-12
Online:
2022-05-25
Published:
2022-09-02
摘要:
采用分子动力学模拟计算方法,考察具有较高层错能的Al纳米线沿不同晶向的力学行为和变形机制。在相同计算条件下与具有较低层错能的Ni、Cu、Au和Ag等FCC金属纳米线进行比较。结果表明:在力学行为方面,Al纳米线的弹性模量呈现明显的结构各向异性,满足E[111] > E[110] > E[100]的关系,这一关系在FCC金属纳米线中普遍成立;Al纳米线的屈服应力随晶向呈现σy[100] > σy[111] > σy[110]的关系,这一关系在具有较低层错能的FCC金属纳米线中不具有普遍性,这与体系中位错形成机制密切相关。根据拉伸变形过程微观结构的演变规律,阐明Al纳米线不同晶向的变形机制,并与具有较低层错能的Ni、Cu、Au和Ag等FCC金属纳米线的变形机制进行比较。结果表明,对于尺度较小的高层错能Al纳米线,Schmid因子和广义层错能均难以准确预测其变形机制。
侯兆阳, 牛媛, 肖启鑫, 王真, 邓庆田. Al纳米线不同晶向力学行为和变形机制的模拟[J]. 计算物理, 2022, 39(3): 341-351.
Zhaoyang HOU, Yuan NIU, Qixin XIAO, Zhen WANG, Qingtian DENG. Simulation of Mechanical Behavior and Deformation Mechanism of Al Nanowires Along Different Crystal Orientations[J]. Chinese Journal of Computational Physics, 2022, 39(3): 341-351.
图1 不同晶向Al纳米线的初始构型示意图(a) [100], (b) [110], (c) [111] ((i)、(ii)、(iii)分别为(a)、(b)、(c)的局部放大,绿色和白色的球体分别代表FCC原子和其他类型原子。)
Fig.1 A schematic of initial configuration of Al nanowires with different crystalline orientations (a) [100], (b) [110], (c) [111] ((i), (ii), (iii) are local enlargements of (a), (b), (c), respectively. The green and white spheres represent FCC atoms and other atoms, respectively.)
Crystal orientation | Leading partial | Trailing partial | Prediction from Schmid factor |
[100] | 0.24 | 0.47 | f-slip |
[110] | 0.47 | 0.24 | twin/p-slip |
[111] | 0.16 | 0.31 | f-slip |
表1 不同晶向FCC金属的Schmid因子和预测变形机制[10] (全位错滑移、部分位错滑移和孪生化分别用f-slip、p-slip和twin表示。)
Table 1 Schmid factors and predicted deformation mechanisms of FCC metals with different orientations[10](Slip by full dislocation, slip by partial dislocation and twinning are indicated by f-slip, p-slip and twin, respectively.)
Crystal orientation | Leading partial | Trailing partial | Prediction from Schmid factor |
[100] | 0.24 | 0.47 | f-slip |
[110] | 0.47 | 0.24 | twin/p-slip |
[111] | 0.16 | 0.31 | f-slip |
Metal | γsf(mJ·m-2) | γusf(mJ·m-2) | γutf(mJ·m-2) | γusf(γutf - γsf) | (γusf- γsf)(γutf-γsf) | |
Computation | Experiment | |||||
Al | 144.68 | 120~144[ | 150.67 | 170.03 | 5.94 | 0.24 |
Ni | 124.62 | 125[ | 363.26 | 426.85 | 1.20 | 0.79 |
Cu | 45.39 | 45[ | 182.33 | 201.26 | 1.17 | 0.88 |
Au | 32.37 | 32[ | 102.37 | 120.04 | 1.16 | 0.80 |
Ag | 16.13 | 16[ | 90.24 | 101.20 | 1.06 | 0.87 |
表2 FCC金属结构的层错能(γsf、γusf和γutf分别表示稳定层错能、不稳定层错能和孪晶层错能。)
Table 2 Stacking fault energy of FCC metals (γsf, γusf and γutf represent stable stacking fault energy, unstable stacking fault energy and twin stacking fault energy, respectively.)
Metal | γsf(mJ·m-2) | γusf(mJ·m-2) | γutf(mJ·m-2) | γusf(γutf - γsf) | (γusf- γsf)(γutf-γsf) | |
Computation | Experiment | |||||
Al | 144.68 | 120~144[ | 150.67 | 170.03 | 5.94 | 0.24 |
Ni | 124.62 | 125[ | 363.26 | 426.85 | 1.20 | 0.79 |
Cu | 45.39 | 45[ | 182.33 | 201.26 | 1.17 | 0.88 |
Au | 32.37 | 32[ | 102.37 | 120.04 | 1.16 | 0.80 |
Ag | 16.13 | 16[ | 90.24 | 101.20 | 1.06 | 0.87 |
图2 基于广义层错能的双参数法预测的FCC金属在不同晶向的变形机制(蓝色区域(p-slip):τ1 < τ2且τ1 < 1;粉色区域(f-slip):τ1 > τ2且τ2 < 1;白色区域(twin):τ1 > 1且τ2 > 1。)
Fig.2 Deformation mechanisms of FCC metals with different crystal orientations predicted with generalized stacking fault energy and Schmid factor (Blue area (p-slip): τ1 < τ2 and τ1 < 1; Pink area(f-slip): τ1 > τ2 and τ2 < 1; White area (twin): τ1 > 1 and τ2 > 1.)
图4 不同晶向Al、Ni、Cu、Au和Ag纳米线在拉伸载荷下的力学特性(a) 弹性模量(E),(b) 屈服应力(σy),(c) 断裂应变(εf)
Fig.4 Mechanical properties of Al, Ni, Cu, Au and Ag nanowires under tension loading (a) elastic modulus (E), (b) yield stress (σy), (c) fracture strain (εf)
图5 [100]晶向Al纳米线拉伸过程微观变形机制(a) 应力-应变曲线,(1)~(4)为特征应变点;(b) 拉伸时微观结构演变过程;(绿色球体代表FCC原子,红色球体代表HCP原子,白色球体代表其他原子。) (c) 体系剪切应变分布;(d) 体系内位错分布(蓝色线条代表全位错,绿色线条代表Shockley部分位错。)
Fig.5 Deformation process of Al nanowire with [100] crystal orientation under tensile loading (a) Stress-strain curve; Points (1)~(4) are characteristic strain points; (b) Microstructure evolution of Al nanowire under tensile loading; (Green spheres are FCC atoms. Red spheres are HCP atoms. White spheres are other atoms.) (c) Distribution of shear strain in the system; (d) Dislocation distribution in the system (The blue lines represent full dislocations. The green lines represent Shockley partial dislocations.)
图7 [110]晶向Al纳米线拉伸过程微观变形机制(a) 应力-应变曲线,(1)~(5)为5个特征应变点;(b) 拉伸时微观结构演变过程;(绿色球体代表FCC原子,红色球体代表HCP原子,白色球体代表其他原子。) (c)应变为ε=0和ε=0.475时纳米线的纵向截面和局域放大图
Fig.7 Deformation process of Al nanowire with [110] crystal orientation under tensile loading (a) Stress-strain curve; Points (1)~(5) are characteristic strains points; (b) Microstructure evolution under tensile loading; (Green spheres are FCC atoms. Red spheres are HCP atoms. White spheres are other atoms.) (c) Longitudinal cross sections of nanowire at ε=0 and ε=0.475, together with enlarged view of local configurations
图9 [111]晶向Al纳米线拉伸过程微观变形机制(a) 应力-应变曲线,(1)~(4)为4个特征应变点;(b) 拉伸时微观结构演变过程;(绿色球体代表FCC原子,红色球体代表HCP原子,白色球体代表其他原子。)(c)体系在特征应变点(4)附近(ε=0.160)处的剪切应变分布
Fig.9 Deformation process of Al nanowire with [111] crystal orientation under tensile loading (a) Stress-strain curve; Points (1)~(4) are characteristic strains points; (b) Microstructure evolution under tensile loading; (Green spheres are FCC atoms. Red spheres are HCP atoms. White spheres are other atoms.) (c) Shear strain distribution of the system at a strain of ε=0.160
1 |
DOI |
2 |
DOI |
3 |
DOI |
4 |
|
5 |
DOI |
6 |
DOI |
7 |
鲁红权, 张俊乾, 范镜泓. 不同晶向金属纳米线拉伸力学性能分子动力学研究[J]. 固体力学学报, 2011, 32 (5): 433- 439.
|
8 |
|
9 |
DOI |
10 |
DOI |
11 |
DOI |
12 |
DOI |
13 |
DOI |
14 |
DOI |
15 |
DOI |
16 |
|
17 |
|
18 |
DOI |
19 |
DOI |
20 |
|
21 |
DOI |
22 |
DOI |
23 |
|
24 |
DOI |
25 |
|
26 |
DOI |
27 |
|
28 |
|
29 |
DOI |
30 |
DOI |
31 |
DOI |
32 |
林长鹏, 刘新健, 饶中浩. 铝纳米颗粒的热物性及相变行为的分子动力学模拟[J]. 物理学报, 2015, 64 (8): 114- 121.
|
33 |
DOI |
34 |
|
35 |
|
36 |
DOI |
37 |
DOI |
38 |
DOI |
39 |
DOI |
[1] | 阳喜元. 纳米孔洞对Ni/Ni3Al纳米线形变行为影响的原子模拟[J]. 计算物理, 2022, 39(6): 727-732. |
[2] | 阿湖宝, 杨志兵, 胡冉, 陈益峰. 纳米尺度下毛细流动的分子动力学模拟[J]. 计算物理, 2021, 38(5): 603-611. |
[3] | 王国华, 崔雅茹, 杨泽, 李小明, 汤宏亮, 杨树峰. FexO-SiO2-CaO-MgO-“NiO”系镍渣势函数及分子动力学模拟[J]. 计算物理, 2021, 38(2): 215-223. |
[4] | 和二斌, 罗志荣, 朱留华. 肌红蛋白力致去折叠的全原子分析[J]. 计算物理, 2020, 37(2): 205-211. |
[5] | 周璐, 马红和. 超临界水中硫酸钠结晶动力学的分子动力学模拟[J]. 计算物理, 2020, 37(2): 212-220. |
[6] | 史晓蕊, 刘振宇, 吴慧英. 纳米孔壁面作用对蛋白质过孔影响的粗粒化分子动力学模拟[J]. 计算物理, 2020, 37(1): 63-68. |
[7] | 梁华, 李茂生. 孔洞和空位对单晶铝力学性能影响的分子动力学研究[J]. 计算物理, 2019, 36(2): 211-218. |
[8] | 张海燕, 殷新春. 简单金属固液界面固化过程生长机制的分子动力学研究[J]. 计算物理, 2019, 36(1): 80-88. |
[9] | 祁美玲, 杨琼, 王苍龙, 田园, 杨磊. 结构材料辐照损伤的分子动力学程序GPU并行化及优化[J]. 计算物理, 2017, 34(4): 461-467. |
[10] | 邹济杭, 叶振强, 曹炳阳. 势能模型对石墨烯导热性质分子动力学模拟的影响[J]. 计算物理, 2017, 34(2): 221-229. |
[11] | 刘冰, 史俊勤, 沈跃, 张军. 石墨狭缝中甲烷吸附的分子动力学模拟[J]. 计算物理, 2013, 30(5): 692-699. |
[12] | 段芳莉, 郭其超. 纳米接触行为的三维多尺度数值模拟[J]. 计算物理, 2012, 29(5): 753-758. |
[13] | 段芳莉, 颜世铛. 半晶态聚合物的分子动力学模拟[J]. 计算物理, 2012, 29(5): 759-765. |
[14] | 戚振红, 张文飞, 贾敏. 纳米尺度流动速度计算的新方法[J]. 计算物理, 2012, 29(4): 503-510. |
[15] | 颜超. 载能Ni原子斜入射Pt(111)表面的分子动力学模拟[J]. 计算物理, 2011, 28(5): 767-772. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发