[1] QIAN L L, WANG S Z, XU D H, et al. Treatment of municipal sewage sludge in supercritical water:A review[J]. Water Res, 2016, 89:118-131. [2] HONG M K S-A, SHIN N, LEE Y H, et al. Synthesis of strontium titanate nanoparticles using supercritical water[J]. Ceram Int, 2016, 42(15):17853-17857. [3] YAKABOYLU O, HARINCK J, SMIT K G, et al. Supercritical water gasification of biomass:Literature and technology overview[J]. Energies, 2015, 8(2):859-894. [4] BYRD A J, KUMAR S, KONG L, et al. Hydrogen production from catalytic gasification of switchgrass biocrude in supercritical water[J]. Int J Hydrogen Energy, 2011, 36(5):3426-3433. [5] XU D H, HUANG C B, WANG S Z, et al. Salt deposition problems in supercritical water oxidation[J]. Chem Eng J, 2015, 279:1010-1022. [6] VOISIN T, ERRIGUIBLE A, BALLENGIEN D, et al. Solubility of inorganic salts in sub- and supercritical hydrothermal environment:Application to SCWO processes[J]. J Supercrit Fluids, 2017, 120:18-31. [7] MASOODIYEH F, MOZDIANFARD M R, KARIMI-SABET J. Solubility estimation of inorganic salts in supercritical water[J]. J Chem Thermodyn, 2014, 78:260-268. [8] LEUSBROCK I, METZ S J, REXWINKEL G, et al. Quantitative approaches for the description of solubilities of inorganic compounds in near-critical and supercritical water[J]. J Supercrit Fluids, 2008, 47:117-127. [9] PETERSON A A, VONTOBEL P, VOGEL F, et al. In situ visualization of the performance of a supercritical-water salt separator using neutron radiography[J]. J Supercrit Fluids, 2008, 43:490-449. [10] SCHUBERT M, REGLER J W, VOGEL F. Continuous salt precipitation and separation from supercritical water. Part 1:Type 1 salts[J]. J Supercrit Fluids, 2010, 52:99-112. [11] SCHUBERT M, REGLER J W, VOGEL F. Continuous salt precipitation and separation from supercritical water. Part 2:Type 2 salts and mixtures of two salts[J]. J Supercrit Fluids, 2010, 52:113-124. [12] SCHUBERT M, AUBERT J, MULLER J B, et al. Continuous salt precipitation and separation from supercritical water. Part 3:Interesting effects in processing type 2 salt mixtures[J]. J Supercrit Fluids, 2012, 6:44-54. [13] VOISIN T, ERRIGUIBLE A, PHILIPPOT G, et al. Investigation of the precipitation of Na2SO4 in supercritical water[J]. Chem Eng Sci, 2017, 174:268-276. [14] GAO J, SHENG Z Q, MENG Y, et al. Growth dynamics and free energy of C36 cluster[J]. Chinese Journal of Computational Physics, 2014, 31(2):247-252. [15] DUAN F L, YAN S D. Molecular dynamics simulation of semicrystalline polymers[J]. Chinese Journal of Computational Physics, 2012, 29(5):759-765. [16] WEI Q H, WANG Y E, YANG M M, et al. Effects of water content on PAM/PVA interpenetrating network hydrogel performance[J]. Chinese Journal of Computational Physics, 2015, 32(5):572-578. [17] WU Y N, WANG L P, ZHU Y Q, et al. Structure of liquid aluminum oxide:A molecular dynamics study[J]. Chinese Journal of Computational Physics, 2011, 28(2):289-294. [18] LVMMEN N, KVAMME B. Kinetics of NaCl nucleation in supercritical water investigated by molecular dynamics simulations[J]. Phys Chem Chem Phys, 2007, 9:3251-3260. [19] LVMMEN N, KVAMME B. Determination of nucleation rates of FeCl2 in supercritical water by molecular dynamics simulations[J]. J Supercrit Fluids, 2008, 47:270-280. [20] LVMMEN N, KVAMME B. Aggregation of FeCl2clusters in supercritical water investigated by molecular dynamics simulations[J]. J Phys Chem, 2008, 112(24):12374-12385. [21] LVMMEN N, KVAMME B. Formation of FeCl2/NaCl-nanoparticles in supercritical water investigated by molecular dynamics simulations:Nucleation rates[J]. Phys Chem Chem Phys, 2008, 10:6405-6416. [22] LVMMEN N, KVAMME B. Properties of aging FeCl2 clusters grown in supercritical water investigated by molecular dynamics simulations[J]. J Phys Chem, 2010, 132(1):399-404. [23] MA H. Hydration structure of Na+, K+, F-, and Cl- in ambient and supercritical water:A quantum mechanics/molecular mechanics study[J]. Int J Quantum Chem, 2014, 114(15):1006-1011. [24] SAKUMA H, ICHIKI M. Density and isothermal compressibility of supercritical H2O-NaCl fluid:Molecular dynamics study from 673 to 2000 K, 0.2 to 2 GPa, and 0 to 22 wt% NaCl concentrations[J]. Geofluids, 2016, 16(1):89-102. [25] XIAN J, LU J F, CHEN J, et al. Molecular dynamics simulation of diffusion coefficients of oxygen, nitrogen, and sodium chloride in supercritical water[J]. Chin Phys Lett, 2001, 18(7):847-849. [26] SVISHCHEV I M, ZASERSKY A Y, NAHTIGAL I G. Molecular dynamic simulations of strontium chloride nanoparticle nucleation in supercritical water[J]. Phys Chem, 2008, 112(51):20181-20189. [27] NAHTIGAL I G, ZASETSKY A Y, SVISHCHEV I M. Nucleation of NaCl nanoparticles in supercritical water:Molecular dynamics simulations[J]. J Phys Chem, 2008, 112(25):7537-7543. [28] BERENDEN H J C, GRIGERA J R, STRAATSMA T P. The missing term in effective pair potentials[J]. J Phys Chem, 1987, 91(24):6269-6271. [29] WERNERSSON E, JUNGWIRTH P. Effect of water polarizability on the properties of solutions of polyvalent ions:Simulations of aqueous sodium sulfate with different force fields[J]. J Chem Theory Comput, 2010, 6(10):3233-3240. [30] CANNON W R, PETTITT B M, MCCAMMON J. Sulfate anion in water:Model structural, thermodynamic, and dynamic properties[J]. J Phys Chem, 1994, 98(24):6225-6230. [31] YASUOKA K, MSTSUMOTO M. Molecular dynamics of homogeneous nucleation in the vapor phase I:Lennard-Jones fluid[J]. J Chem Phys, 1998, 109(19):8451-8462. [32] ZHANG J L, HE Z H, HAN Y, et al. Nucleation and growth of Na2CO3 clusters in supercritical water using molecular dynamics simulation[J]. Acta Phys-Chim Sin, 2012, 28(7):1691-1700. [33] XIAO J, LU J F, CHEN J, et al. Molecular dynamics simulation of diffusion coefficients of oxygen, nitrogen and sodium chloride in supercritical water[J]. Chinese Phys Lett, 2001, 18(7):847-849. [34] LEAST D G, HAO L. Quaternary diffusion coefficients of NaCl-MgCl2-Na2SO4-H2O synthetic seawaters by least-squares analysis of taylor dispersion profiles[J]. J of Solution Chem, 1993, 22(3):263-277. |