[1] ZHAO Y H, LI Y J, YANG Z A, et al. Molecular dynamics simulation of Cu with a hole under minus static pressures[J]. Chinese Journal of Computational Physics, 2006, 23(3):343-349. [2] ZHENG H, LIU H, ZHANG G. Computer simulation of amorphization phenomena in metals under irradiation[J]. Computational Materials Science, 2004, 30(3):230-234. [3] WOLFER W G. Radiation effects in plutonium[J]. Los Alamos Sci, 2000, 26(2):274-285. [4] 黄克智, 肖纪美. 材料的损伤断裂机理和宏微观力学理论[M]. 北京:清华大学出版社, 1999. [5] 单德彬, 袁林, 郭斌. 分子动力学模拟在裂纹萌生和扩展中的研究进展[J]. 兵器材料科学与工程, 2003, 26(3):63-67. [6] 赫尔曼. 理论物理学中的计算机模拟方法[M]. 北京:北京大学出版社, 1996. [7] 罗旋. β-SiC表面及Al/SiC界面结构的分子动力学模拟[D]. 哈尔滨:哈尔滨工业大学, 1997. [8] BELAK J. On the nucleation and growth of voids at high strain-rates[J]. Journal of Computer-Aided Materials Design, 1998, 5(2-3):193-206. [9] LUO J, ZHU W J, LIN L B, et al. Molecular dynamics simulation of void growth in single crystal copper under uniaxial impacting[J]. Acta Physica Sinica, 2005, 54(6):2791-2798. [10] TRAIVIRATANA S, BRINGA E M, BENSON D J, et al. Void growth in metals:Atomistic calculations[J]. Acta Materialia, 2008, 56(15):3874-3886. [11] ZHAO K J, CHEN C Q, SHEN Y P, et al. Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper[J]. Computational Materials Science, 2009, 46(3):749-754. [12] LI Y L, WU W P, LI N L, et al. Cohesive zone representation of crack and void growth in single crystal nickel via molecular dynamics simulation[J]. Computational Materials Science, 2015, 104:212-218. [13] TANG T, KIM S, HORSTEMEYER M F. Molecular dynamics simulations of void growth and coalescence in single crystal magnesium[J]. Acta Materialia, 2010, 58(14):4742-4759. [14] CUI Y, CHEN Z. Molecular dynamics simulation of the influence of elliptical void interaction on the tensile behavior of aluminum[J]. Computational Materials Science, 2015, 108:103-113. [15] LUBARDA V A, SCHNEIDER M S, KALANTAR D H, et al. Void growth by dislocation emission[J]. Acta Materialia, 2004, 52(6):1397-1408. [16] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1):1-19. [17] MENDELEV M I, BOKSTEIN B S. Molecular dynamics study of vacancy migration in Al[J]. Materials Letters, 2007, 61(14):2911-2914. [18] HORSTEMEYER M F, BASKES M I, PLIMPTON S J. Length scale and time scale effects on the plastic flow of fcc metals[J]. Acta Materialia, 2001, 49(20):4363-4374. [19] ZONG L, XU X, ZHOU H. Molecular dynamics simulation of tension deformation in monocrystalline β-SiC bulk[J]. Chinese Journal of Computational Physics, 2010, 27(6):898-904. [20] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-The open visualization tool[J]. Modelling Simul Mater Sci Eng, 2010, 18(6):2154-2162. [21] BRANDL C, DERLET P M, Van. SWYGENHOVEN H. Strain rates in molecular dynamics simulations of nanocrystalline metals[J]. Philosophical Magazine, 2009, 89(34-36):3465-3475. [22] PANG W, ZHANG G, XU A, et al. Size effect in void growth and coalescence of face-centered cubic copper crystals[J]. Chinese Journal of Computational Physics, 2011, 28(4):540-546. [23] CHANDRA S, KUMAR N N, SAMAL M K, et al. Molecular dynamics simulations of crack growth behavior in Al in the presence of vacancies[J]. Computational Materials Science, 2016, 117:518-526. [24] RICE J R. Dislocation nucleation from a crack tip:An analysis based on the Peierls concept[J]. Journal of the Mechanics & Physics of Solids, 1992, 40(2):239-271. |