[1] HAGHIGHI S, ANSARI R, AJORI S. Interfacial properties of 3D metallic carbon nanostructures (T6 and T14)-reinforced polymer nanocomposites:A molecular dynamics study[J]. Journal of Molecular Graphics and Modelling, 2019, 92:341-356. [2] YANG J S, YANG C L, WANG M S, et al. Effect of functionalization on the interfacial binding energy of carbon nanotube/nylon 6 nanocomposites:A molecular dynamics study[J]. RSC Advances, 2012, 2:2836-2841. [3] LIU L, FANG Z, GU A, et al. Aminofunctionalization effect on the microtribological behavior of carbon nanotube/bismaleimide nanocomposites[J]. Journal of Applied Polymer Science, 2009, 113(6):3484-3491. [4] KHARE K S, KHABAZ F, KHARE R. Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites:Role of strengthening the interfacial interactions[J]. ACS Applied Materials & Interfaces, 2014, 6(9):6098-6110. [5] XU J Z, CHEN T, YANG C L, et al. Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes:A comparative study[J]. Macromolecules, 2010, 43(11):5000-5008. [6] ZOU J H, YE Z Q, CAO B Y. Effects of potential models on thermal properties of graphene in molecular dynamics simulations[J]. Chinese Journal of Computational Physics, 2017, 34(2):221-229. [7] TANG Q M, ZHEN T Y, LI D Y, et al. Mechanical properties of graphene/hydroxyapatite composite materials:Numerical study[J]. Chinese Journal of Computational Physics, 2018, 35(1):72-76. [8] WANG Y, XU X, TIAN Z, et al. Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution[J]. Chemistry (Weinheim an der Bergstrasse, Germany), 2006, 12(9):2542-2549. [9] 刘演新. 多壁碳纳米管的表面接枝改性及其衍生物[D]. 北京:北京化工大学, 2008. [10] LORDI V, YAO N. Molecular mechanics of binding in carbon- nanotube-polymer composites[J]. J Mater Res, 2000, 15(12), 2770-2779 [11] 王彪, 王贤保, 胡平安, 等. 碳纳米管/聚合物纳米复合材料研究进展[J]. 高分子通报, 2002(6):8-14. [12] MONTAZERI A,MONTAZERI N,FARZANEH S. Thermo-mechanical characterization of multi-walled carbon nanotube reinforced polycarbonate composites:A molecular dynamics approach[J]. Comptes Rendus Mécanique, 2015, 343(5-6):371-396. [13] YANG J S, YANG C L, WANG M S, et al. Crystallization of alkane melts induced by carbon nanotubes and graphene nanosheets:A molecular dynamics simulation study[J]. Physical Chemistry Chemical Physics, 2011, 13(34):15476-15482. [14] LIANG H, LI M S. Molecular dynamics study of mechanical properties of single crystal aluminum with voids and vacancies[J]. Chinese Journal of Computational Physics, 2019, 36(2):211-218. [15] 陈芳, 王建龙, 陈丽珍, 等. HNS/EP35 PBXs力学性能的分子动力学模拟[J]. 四川大学学报:自然科学版, 2015, 52:860. [16] 吕成. 化学修饰对石墨烯/聚合物复合材料界面及其特性影响的分子动力学模拟研究[D]. 北京:中国石油大学, 2011. [17] JANG C, LACY T E, GWALTNEY S R, et al. Interfacial shear strength of cured vinyl ester resin-graphite nanoplatelet from molecular dynamics simulations[J]. Polymer, 2013, 54(13):3282-3289. [18] SUN H, REN P, FRIED J R. The COMPASS force field:Parameterization and validation for phosphazenes[J]. Computational & Theoretical Polymer Science, 1998, 8(1-2):229-246. |