[1] MIAO T, YEOM S, WANG P, et al. Graphene nanoelectromechanical systems as stochastic-frequency oscillators[J]. Nano Letters, 2014, 14(6):2982. [2] JING Z, GUANG Y Z, DONG X S. Review of graphene-based strain sensors[J]. Chinese Physics B, 2013, 22(5):057701. [3] CARBONE M, GORTON L, ANTIOCHIA R. An overview of the latest graphene-based sensors for glucose detection:The effects of graphene defects[J]. Electroanalysis, 2015, 27(1):16. [4] GHOSH S, CALIZO I, TEWELDEBRHAN D, et al. Extremely high thermal conductivity of graphene:Prospects for thermal management applications in nanoelectronic circuits[J]. Applied Physics Letters, 2008, 92(15):151911. [5] YANG Z, LIU G, QU Y, et al. First principles study on adsorbing of Fe on N doping carbon nanorube rings[J]. Chinese Journal of Computational Physics, 2016, 33(3):374. [6] ZHOU S, LIU G, JIANG Y, et al. Adsorbing of magnesium on phosphorus-doping single-walled silicon nanotubes:First-principles study[J]. Chinese Journal of Computational Physics, 2016, 33(5):554. [7] WANG W, GAO J, ZHANG T, et al. Performance of asymmetric linear doping triple-material-gate GNRFETs[J]. Chinese Journal of Computational Physics, 2015, 32(1):115. [8] HAO F, FANG D, XU Z. Mechanical and thermal transport properties of graphene with defects[J]. Applied Physics Letters, 2011, 99(4):041901. [9] NG T Y, YEO J J, LIU Z S. A molecular dynamics study of the thermal conductivity of graphene nanoribbons containing dispersed Stone-Thrower-Wales defects[J]. Carbon, 2012, 50(13):4887. [10] MORTAZAVI B, AHZI S. Thermal conductivity and tensile response of defective graphene:A molecular dynamics study[J]. Carbon, 2013, 63:460-470. [11] VICARELLI L, HEEREMA S J, DEKKER C, et al. Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices[J]. ACS Nano, 2015, 9(4):3428. [12] WANG S P, GUO J G, ZHOU L J. Influence of Stone-Wales defects on elastic properties of graphene nanofilms[J]. Physica E, 2013, 48:29. [13] LÓPEZ-POLÍN G, GÓMEZ-NAVARRO C, PARENTE V, et al. Increasing the elastic modulus of graphene by controlled defect creation[J]. Nature Physics, 2015, 11(1):26. [14] FTHENAKIS Z G, ZHU Z, TOMÁNEK D. Effect of structural defects on the thermal conductivity of graphene:From point to line defects to haeckelites[J]. Physical Review B, 2014, 89(12):125421. [15] ZOU J, YE Z, CAO B. Effects of potential models on thermal properties of graphene in molecular dynamics simulations[J]. Chinese Journal of Computational Physics, 2017, 34(2):221. [16] GRUJICIC M, CAO G, ROY W N. Computational analysis of the lattice contribution to thermal conductivity of single-walled carbon nanotubes[J]. Journal of Materials Science, 2005, 40:1943. [17] MALLIKA A N D. Molecular dynamics study of effects of geometric defects on the mechanical properties of graphene[D]. University of British Columbia, 2012. [18] DILRUKSHI K G S, DEWAPRIYA M A N, PUSWEWALA U G A. Size dependency and potential field influence on deriving mechanical properties of carbon nanotubes using molecular dynamics[J]. Theoretical and Applied Mechanics Letters, 2015, 5(4):167. [19] BRENNER D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films[J], Physical Review B, 1990, 42(15):9458. [20] HOOVER W G. Constant-pressure equations of motion[J]. Physical Review A, 1986, 34(3):2499. [21] MELCHIONNA S, CICCOTTI G, LEE H B. Hoover NPT dynamics for systems varying in shape and size[J]. Molecular Physics, 1993, 78(3):533. [22] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1):1. [23] FAVATA A, MICHELETTI A, RYU S, et al. An analytical benchmark for MD codes:Testing LAMMPS on the 2nd generation Brenner potential[J]. arXiv Preprint arXiv:2015,1508:00194. [24] EL-BARABRY A A, TELLING R H, EWELS C P, et al. Structure and energetics of the vacancy in graphite[J]. Physical Review B, 2003, 68(14):144107. [25] SHIN H, KANG S, KOO J, et al. Cohesion energetics of carbon allotropes:Quantum Monte Carlo study[J]. The Journal of Chemical Physics, 2014, 140(11):114702. [26] CHU Y, RAGAB T, BASARAN C. The size effect in mechanical properties of finite-sized graphene nanoribbon[J]. Computational Materials Science, 2014, 81:269. [27] THOMAS S, AJITH K M. Molecular dynamics simulation of the thermo-mechanical properties of monolayer graphene sheet[J]. Procedia Materials Science, 2014, 5:489. |