计算物理 ›› 1998, Vol. 15 ›› Issue (1): 65-70.

• 论文 • 上一篇    下一篇

运动导体中电磁场计算的迎风有限元法

沈敏1, 邓康2, 杨凌辉3   

  1. 1. 上海大学上海市应用数学和力学研究所 200072;
    2. 上海大学材料学院 200072;
    3. 华东电力试验研究所高压室 200437
  • 收稿日期:1997-02-28 出版日期:1998-01-25 发布日期:1998-01-25
  • 作者简介:沈敏,男,37,副教授,硕士,上海大学189信箱

AN UPWIND FEM SCHEME FOR ELECTROMAGNETIC FIELD PROBLEM IN MOVING CONDUCTOR

Shen Min1, Deng Kang2, Yang Linghui3   

  1. 1. Shanghai Institute of Applied Mathematics & Mechanics, Shanghai University, 200072;
    2. School of Material, Shanghai University, 200072;
    3. High Voltage Dept., East China Electric Power Test & Research Institute, 200437
  • Received:1997-02-28 Online:1998-01-25 Published:1998-01-25

摘要: 运动导体中电磁场控制方程为一对流扩散型微分方程,为克服此类方程的Galerkin有限元解在网格Peclet数大于1时出现的伪振荡同时克服Heinrich迎风有限元法对扩散项处理的不合理性,提出了一种修正的Heinrich迎风有限元法,并应用于若干运动导体电磁场的有限元分析。

关键词: 运动导体, 电磁场, 有限元, 迎风有限元

Abstract: The governing equation of electromagnetic field in moving conductor is of convective-diffusive type. To suppress the spurious oscillations which occur in its Galerkin FEM solution when the grid Peclet number is greater than one and to avoid an inappropriate treatment of diffusive term by Heinrich's upwind scheme, a modified upwind scheme of Heinrich's type is proposed. The scheme is applied to FEM analysis of several electromagnetic field problems in moving conductor.

Key words: moving conductor, electromagnetic field, finite element, upwind FEM

中图分类号: