计算物理 ›› 1997, Vol. 14 ›› Issue (1): 121-128.
• 论文 • 上一篇
李融林1, 倪光正1, 俞集辉2
收稿日期:
修回日期:
出版日期:
发布日期:
基金资助:
Li Ronglin1, Ni Guangzheng1, Yu Jihui2
Received:
Revised:
Online:
Published:
摘要: 基于尖角状角点附近的场分布特性,提出了应用极坐标系中的B样条有限元法求解尖角奇异边值问题。该方法具有精度高和易于实现等优点。通过对Motz问题、裂梁问题以及扇形波导本征值问题等尖角奇异边值问题的计算分析,验证方法的有效性。
关键词: 奇异性, 极坐标, B样条, 有限元
Abstract: Based on the distribution characteristic of fields in the neighbourhood of a sharp corner, the B spline finite element method in polar coordinates is exploited for solving the boundary-value problems with singularities at the sharp corner. The proposed method improves the overall accuracy and is convenient to implement. The Motz problem, cracked-beam problem, and eigenvalue problem for the sector waveguides are calculated and analyzed to verify the validity of the method.
Key words: Singularity, polar coordinates, B-spline, finite element
中图分类号:
O241.5
李融林, 倪光正, 俞集辉. 极坐标系中的B样条有限元法在求解尖角奇异边值问题中的应用[J]. 计算物理, 1997, 14(1): 121-128.
Li Ronglin, Ni Guangzheng, Yu Jihui. APPLICATION OF THE B SPLINE FINITE ELEMENT METHOD IN POLAR COORDINATES TO SOLVING BOUNDARY VALUE PROBLEMS WITH SINGULARITIES AT A SHARP CORNER[J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 14(1): 121-128.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.cjcp.org.cn/CN/
http://www.cjcp.org.cn/CN/Y1997/V14/I1/121