计算物理 ›› 2025, Vol. 42 ›› Issue (1): 18-27.DOI: 10.19596/j.cnki.1001-246x.8820

• 论文 • 上一篇    下一篇

KDF-SPH方法在分数阶对流扩散方程数值解中的应用

张秀霞(), 热合买提江·依明*()   

  1. 新疆大学数学与系统科学学院, 新疆 乌鲁木齐 830017
  • 收稿日期:2023-08-14 出版日期:2025-01-25 发布日期:2025-03-08
  • 通讯作者: 热合买提江·依明
  • 作者简介:

    张秀霞, 女, 硕士研究生, 研究方向为数值计算及其模拟研究, E-mail:

  • 基金资助:
    新疆自然科学基金(2020D01C022)

Application of KDF-SPH Method in Numerical Solution of Fractional Convection-diffusion Equation

Xiuxia ZHANG(), Imin RAHMATJAN*()   

  1. Xinjiang University, College of Mathematics and Systems Science, Urumqi, Xinjiang 830017, China
  • Received:2023-08-14 Online:2025-01-25 Published:2025-03-08
  • Contact: Imin RAHMATJAN

摘要:

将光滑粒子流体动力学(SPH)方法基础上提出的避免核函数导数的SPH (KDF-SPH)方法应用到时间分数阶对流扩散方程的数值求解。在时间分数阶对流扩散方程的模拟计算过程中, 对Caputo时间分数阶导数采用有限差分方法(FDM), 对空间导数分别采用KDF-SPH方法和SPH方法。结果表明: KDF-SPH方法比SPH方法误差小。KDF-SPH保留了SPH (无网格、拉格朗日和粒子性质)的优点, 该方法在减少误差以及保持稳定性方面发挥了较大作用。无论核梯度是否存在, 数值近似都可以进行, 避免了核函数导数的计算, 降低了对核函数可导性的要求, 提高了计算效率, 易于编程实现, 便于扩展高维问题的计算。

关键词: KDF-SPH, 有限差分方法, Caputo分数阶导数, 数值模拟

Abstract:

Based on the smoothed particle hydrodynamics (SPH) method, the SPH method without kernel function derivative (KDF-SPH) is applied to the numerical solution of the time fractional convection-diffusion equation. In the simulation process of the time fractional convection-diffusion equation, the finite difference method (FDM) is used for the Caputo time fractional derivative, and the KDF-SPH method and SPH method are used for the spatial derivative respectively. The results show that the error of KDF-SPH method is much smaller than that of SPH method. Compared with the SPH method, KDF-SPH retains all the advantages of SPH (meshless, Lagrangian and particle properties). This method plays a great role in reducing errors and maintaining stability, and numerical approximation can be carried out regardless of whether the kernel gradient exists or not. It avoids the calculation of the derivative of the kernel function, reduces the requirement for the derivability of the kernel function, improves the calculation efficiency and is easy to be programmed. It is easy to expand the calculation of high-dimensional problems and has good practical application value.

Key words: KDF-SPH, fini, Caputo fractional derivative, numerical simulation