Chinese Journal of Computational Physics ›› 2025, Vol. 42 ›› Issue (1): 38-46.DOI: 10.19596/j.cnki.1001-246x.8829
• Research Article • Previous Articles Next Articles
Zhifang FENG1(), Lina LIU1, Xun LIU2,*(
), Wei LI2, Chengxin YU3, Difa YE3(
)
Received:
2023-09-04
Online:
2025-01-25
Published:
2025-03-08
Contact:
Xun LIU
Zhifang FENG, Lina LIU, Xun LIU, Wei LI, Chengxin YU, Difa YE. Underwater Transmission Characteristics and Regulation of Intense Femtosecond Laser Pulses[J]. Chinese Journal of Computational Physics, 2025, 42(1): 38-46.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8829
Magnitude | Symbol/units | Value |
Vacuum wavelength | λ0/nm | 800 |
Linear refractive index | n0 | 1.334 |
Nonlinear index | n2/(cm2·W-1) | 1.9×10-16 |
MPA(Keldysh) | β(K)/(cm2K-3·W1-K) | 3.6×10-50 |
Group veolcity dispersion | β2/(fs2·cm-1) | 248 |
MPA order | 5 | |
Critical electron density | ne/cm-3 | 1.7×1021 |
Plasma absorption | σ/cm2 | 6.3×10-18 |
Neutral atom density | nat/cm-3 | 6.7×1022 |
Ionization potential | Ui/eV | 6.5 |
E-ion collision time | τk/fs | 3 |
Speed of light in vacuum | c/(m·s-1) | 3 |
Vacuum permittivity | ε/(F·m-1) | 8.85×10-12 |
Attenuation coefficient | C/m-1 | 2.42 |
Table 1 Physical parameters in numerical simulation[31]
Magnitude | Symbol/units | Value |
Vacuum wavelength | λ0/nm | 800 |
Linear refractive index | n0 | 1.334 |
Nonlinear index | n2/(cm2·W-1) | 1.9×10-16 |
MPA(Keldysh) | β(K)/(cm2K-3·W1-K) | 3.6×10-50 |
Group veolcity dispersion | β2/(fs2·cm-1) | 248 |
MPA order | 5 | |
Critical electron density | ne/cm-3 | 1.7×1021 |
Plasma absorption | σ/cm2 | 6.3×10-18 |
Neutral atom density | nat/cm-3 | 6.7×1022 |
Ionization potential | Ui/eV | 6.5 |
E-ion collision time | τk/fs | 3 |
Speed of light in vacuum | c/(m·s-1) | 3 |
Vacuum permittivity | ε/(F·m-1) | 8.85×10-12 |
Attenuation coefficient | C/m-1 | 2.42 |
Fig.1 Modulation effects of laser input energy and focal length on the filament (a) evolution of peak plasma density (black line represents left coordinate) and peak intensity (red line represents right coordinate) with propagation distance z; (b)maximum value of the peak plasma density and the peak intensity with different input energy and focal length corresponding to (a); (c) evolution of normalized energy with propagation distance z (The black, blue, red, purple, green solid lines represent the input pulse energy of Ein=1, 3, 6, 9, 12 μJ, respectively.)
Fig.3 Modulation of optical filament properties and supercontinuum spectrum by waist width and focal length (a)~(f) evolution of peak plasma density and peak intensity with propagation distance z under different beam waist width and focal length, the intensity of the spectra at the initial distance of filament under (g)fixed beam waist width and (h)fixed focal length
Fig.4 Effect of attenuation coefficient on optical filament properties and energy evolution (a)~(j) evolution of peak plasma density and peak intensity with propagation distance z for different attenuation coefficients; evolution of normalized energy with propagation distance z for (k) different focal lengths and (l) different input energies
1 |
DOI |
2 |
DOI |
3 |
|
4 |
DOI |
5 |
|
6 |
冯志芳, 刘勋, 郝婷, 等. 面向遥感应用的飞秒激光脉冲超长距离传输的研究进展[J]. 中国激光, 2023, 50(7): 41- 58.
|
7 |
于立春, 屠琴芬, 余玮, 等. 在稀薄等离子体中激光传播的相对论自聚焦[J]. 计算物理, 2001, 18(5): 457- 462.
DOI |
8 |
王雨虹, 王江安, 吴荣华. 透明液体中激光致声特性[J]. 计算物理, 2010, 27(2): 257- 262.
|
9 |
DOI |
10 |
DOI |
11 |
BOYD R W, GAETA A L, GIESE E. Nonlinear optics[M]//Drake G W F. Springer handbook of atomic, molecular, and optical physics. Cham: Springer International Publishing, 2008: 1097-1110.
|
12 |
DOI |
13 |
陈军, 莫则尧, 郑春阳, 等. 激光自聚焦和成丝模拟中的并行计算方法[J]. 计算物理, 2008, 25(2): 127- 132.
|
14 |
DOI |
15 |
DOI |
16 |
DOI |
17 |
DOI |
18 |
DOI |
19 |
DOI |
20 |
|
21 |
王菲, 杨祎, 段作梁, 等. 基于可见光的水下激光传输信道的特性分析[J]. 光通信技术, 2016, 40(3): 26- 28.
|
22 |
|
23 |
邓孺孺, 何颖清, 秦雁, 等. 分离悬浮质影响的光学波段(400~900 nm)水吸收系数测量[J]. 遥感学报, 2012, 16(1): 174- 191.
|
24 |
邓孺孺, 何颖清, 秦雁, 等. 近红外波段(900~2 500 nm)水吸收系数测量[J]. 遥感学报, 2012, 16(1): 192- 206.
|
25 |
|
26 |
|
27 |
|
28 |
HE D M, SEET G G L. Underwater lidar imaging (UWLI) system in short turbid water tank[C]//Optical Engineering for Sensing and Nanotechnology (ICOSN 2001). Yokohama: SPIE, 2001: 272-275.
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
XIAO Haili, WU Hong, CHI Xuebin. SCE: Grid environment for scientific computing[C]//International Conference on Networks for Grid Applications. Berlin: Springer, 2009: 35-42.
|
34 |
|
[1] | ZHANG Rui, CHEN Lei, ZENG Wen, JU Yingxin, LI Nanyu, SONG Peng. Simulation of Effect of Discharge Voltage and Dielectric Material on Ionisation Characteristics of Methane Dielectric Blocking Discharge [J]. Chinese Journal of Computational Physics, 2025, 42(1): 47-56. |
[2] | Guiqin YIN, Yongbo JIANG, Yutian HUANG. Discharge Characteristics of Low Pressure Capacitively Coupled Ar/CH4 Plasma [J]. Chinese Journal of Computational Physics, 2024, 41(4): 472-479. |
[3] | Guangzu PAN, Dan DU, Hua ZHOU, Kaijian YANG, Guanjin QIAO, Shaoxiong HU, Weibo YAO, Xueyu GONG. Study on Radiation Characteristics of Cylindrical Hydrogen and Argon Plasma Antennas under Inhomogeneous Magnetic Field [J]. Chinese Journal of Computational Physics, 2024, 41(3): 334-344. |
[4] | Sijie OUYANG, Shuanghui HU, Xuefeng OUYANG, Wanpo ZHU, Yuandan LAN, Xuange HUANG. Discrete Alfvén Eigenmodes in ITER with the Internal Transport Barrier Scenario [J]. Chinese Journal of Computational Physics, 2023, 40(6): 677-688. |
[5] | Xiaoyun ZHAO, Bingkai ZHANG, Shigang LI, Yijia TANG. Effects of Secondary Electron Emission Coefficient on the Plasma Wall Potential with Super-extensive Electrons [J]. Chinese Journal of Computational Physics, 2023, 40(4): 482-489. |
[6] | Feng FANG, Wenchang ZHOU, Changjie LUO, Yufan LI, Jie YANG. Ion Temperature and Coulomb Coupling Parameter of Ultracold Neutral Plasma in Ion Equilibration Stage [J]. Chinese Journal of Computational Physics, 2023, 40(3): 275-281. |
[7] | Yuanzhi ZHOU, Chunyang ZHENG, Zhanjun LIU, Lihua CAO, Ruijin CHENG, Xiantu HE. Suppression of Stimulated Raman Scattering and Stimulated Brillouin Scattering in Weakly Magnetized Plasmas [J]. Chinese Journal of Computational Physics, 2023, 40(2): 136-146. |
[8] | Taiwu HUANG, Ke JIANG, Ran LI, Cangtao ZHOU. Propagation of Intense Laser and Transport of Relativistic Electron Beam in Inhomogeneous Plasmas [J]. Chinese Journal of Computational Physics, 2023, 40(2): 147-158. |
[9] | Wenshuai ZHANG, Hongbo CAI, Enhao ZHANG, Bao DU, Shiyang ZOU, Shaoping ZHU. Influence of Mach Number on Structure of Collisional Plasma Shock Waves: Fully Kinetic Simulations [J]. Chinese Journal of Computational Physics, 2023, 40(2): 199-209. |
[10] | Tianxing HU, Zhengmao SHENG, Dong WU. Solution of Wigner-Poisson System with Combining Flux Balance and Fourier Spectrum Methods [J]. Chinese Journal of Computational Physics, 2023, 40(2): 248-257. |
[11] | LIU Zuguang, LI Xinxia, YANG Ming. Effect of Lower Hybrid Wave Current Drive with High Component N‖ on EAST [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(4): 467-472. |
[12] | LI Qiong, LIU Haifeng, ZHANG Gongmu, ZHANG Qili. Application of Simulated Annealing Method in Chemical Free Energy Model [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(3): 259-264. |
[13] | LI Xuemei, WANG Yuhua. Influence Factors in Two-Dimensional Plasma Density Reconstruction [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(2): 187-193. |
[14] | CHANG Hengxin, XU Zheng, YAO Weipeng, XIE Yu, QIAO Bin. Study on Extreme Plasma Dynamics by Quantum Electrodynamic Particle-in-Cell Simulations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(5): 526-542. |
[15] | ZHANG Hua, WU Sizhong, ZHOU Cangtao, HE Minqing, CAI Hongbo, CAO Lihua, ZHU Shaoping, HE Xiantu. Numerical Method for Relativistic Vlasov Equation in Cartesian-Spherical Coordinate System [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(5): 543-554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.