[1] LIU H L, DEBENEDTTI W J I, PEIXOTO T, et al. Morphology and chemical termination of HF-etched Si3N4 surfaces[J]. Applied Physics Letters, 2014, 105(26):261603.[2] VÉLEZ-FORT E, PALLECCHI E, SILLY M G, et al. Single step fabrication of N-doped graphene/Si3N4/SiC heterostructures[J]. Nano Research, 2014, 7(6):835-843.[3] BOYKO T D, HUNT A, ZERR A, et al. Electronic structure of spinel-type nitride compounds Si3N4, Ge3N4, and Sn3N4 with tunable band gaps:Application to light emitting diodes[J]. Physical Review Letters, 2013, 111(9):097402.[4] SERGHIOU G, MIEHE G, TSCHAUNER O, et al. Synthesis of a cubic Ge3N4 phase at high pressures and temperatures[J]. Journal of Chemical Physics, 1999, 111(10):4659-4662.[5] ZHANG S L, WANG W, ZHANG ERHU, et al. Half-metallic ferromagnetism in transition-metal doped germanium nitride:A first-principles study[J]. Physics Letters A, 2010, 374(31-32):3234-3237.[6] MACHON D, MEERSMAN F, WILDING M C, et al. Pressure-induced amorphization and polyamorphism:Inorganic and biochemical systems[J]. Progress in Materials Science, 2014, 61:216-282.[7] WANG V, HE H P, ZHANG S L, et al. Influence of Mn concentration on the electronic and magnetic properties of Mn doped β-Si3N4:A first-principles study[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(19):2972-2976.[8] CHING W Y, MO S D, OUYANG L Z. Electronic and optical properties of the cubic spinel phase of c-Si3N4, c-Ge3N4, c-SiGe2N4, and c-GeSi2N4[J]. Physical Review B, 2001, 63(24):245110.[9] DING Yingchun, CHEN Min, WU Wenjuan. Theoretical calculations of stability, mechanical and thermodynamic properties of IVA group willemite-Ⅱ nitrides[J]. Journal of Theoretical and Computational Chemistry, 2015, 14(4):1550024.[10] WANG H, CHEN Y, KANETA Y, et al. First-principles study on effective doping to improve the optical properties in spinel nitrides[J]. Journal of Alloys and Compounds, 2010, 491(1-2):550-559.[11] HE H L, SEKINE T, KOBAYASHI T, et al. Phase transformation of germanium nitride (Ge3N4) under shock wave compression[J]. Journal of Applied Physics, 2001, 90(9):4403-4406.[12] LEINEWEBER K, O'KEEFFE M, SOMAYAZULU M, et al. Synthesis and structure refinement of the spinel, γ-Ge3N4[J]. Chemsitry-A European Journal, 1999, 5(10):3076-3078.[13] WANG Z, ZHAO Y, SCHIFERL D. Threshold pressure for disappearance of size-induced effect in spinel-structure Ge3N4 nanocrystals[J]. The Journal of Physical Chemistry B, 2003, 107(51):14151-14153.[14] LUO Yongsong, CANG Yuping, CHEN Dong. Determination of the finite-temperature anisotropic elastic and thermal properties of Ge3N4:A first-principles study[J]. Computational Condensed Matter, 2014, 1:1-7.[15] CUI Lin, HU Meng, WANG Qianqian, et al. Prediction of novel hard phases of Si3N4:A first-principles calculations[J]. Journal of Solid State Chemistry, 2015, 228:20-26.[16] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A):A1133-A1138.[17] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868.[18] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11):7892-7895.[19] MONKHORST H J, PACKJ D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12):5188-5192.[20] OTERO-DE-LA-ROZA A, LUANNA V. Gibbs2:A new version of the quasi-harmonic model code. I. Robust treatment of the static data[J]. Computer Physics Communications, 2011, 182(8):1708-1720.[21] OTERO-DE-LA-ROZA A, ABBASI-PÉREZ D, LUANA V. Gibbs2:A new version of the quasi-harmonic model code. Ⅱ. Models for solid-state thermodynamics, features and implementation[J]. Computer Physics Communications, 2011, 182(10):2232-2248.[22] WANG Y, LIU Z K, CHEN L Q. Thermodynamic properties of Al, Ni, NiAl and Ni3Al from first-principles calculations[J]. Acta Materialia, 2004, 52(9):2665-2671.[23] SOIGNARD E, MCMILLAN P F, LEINENWEBER K. Solid solutions and ternary compound formation among Ge3N4-Si3N4 nitride spinels synthesized at high pressure and high temperature[J]. Chemistry of Materials, 2004, 16(25):5344-5349.[24] SOIGNARD E, SOMAYAZULU M, DONG J J, et al. High pressure-high temperature synthesis and elasticity of the cubic nitride spinel γ-Si3N4[J]. Journal of Physics:Condensed Matter, 2001, 13(4):557-563.[25] YANG M, WANG S J, FENG Y P, et al. Electronic structure of germanium nitride considered for gate dielectrics[J]. Journal of Applied Physics, 2007, 102(1):013507.[26] EIDINI M, PAULINO G H. Unraveling metamaterial properties in zigzag-based folded sheets[J]. Science Advances, 2015, 1(8):1500224.[27] PUGH S F. XCⅡ. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367):823-843.[28] ZHANG J D, YANG Kun. Theoretical study of the thermodynamic properties of cubic Zr3N4 and Hf3N4 under high pressure[J]. Journal of Alloys and Compounds, 2014, 608:90-94.[29] FENG S K, LI S M, FU H Z. First-principles calculation and quasi-harmonic Debye model prediction for elastic and thermodynamic properties of Bi2Te3[J]. Computational Materials Science, 2014, 82:45-49.[30] BIRCH F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300K[J]. Journal of Geophysical Research, 1978, 83(B3):1257-1268.[31] WANG H, CHEN Y, KANETA Y, et al. First-principles investigation of the structural, electronic and optical properties of olivine-Si3N4and olivine-Ge3N4[J]. Journal of Physics:Condensed Matter, 2006, 18(47):10663-10676.[32] DUAN Y H, ZHANG K M, XIE X D. Band structural properties of β-C3N4, β-Si3N4 and β-Ge3N4[J]. Acta Physica Sinica, 1996, 45(3):512-517.[33] DEBYE P. Zur theorie der spezifischen wärmen[J]. Annalen der Physik, 1912, 344(14):789-839. |