计算物理 ›› 2025, Vol. 42 ›› Issue (1): 1-9.DOI: 10.19596/j.cnki.1001-246x.8835

• 论文 • 上一篇    下一篇

均匀风场作用下黏性可压缩射流稳定性分析

赵腾飞(), 张华*()   

  1. 华北电力大学水利与水电工程学院, 北京 102206
  • 收稿日期:2023-09-08 出版日期:2025-01-25 发布日期:2025-03-08
  • 通讯作者: 张华
  • 作者简介:

    赵腾飞, 男, 博士研究生, E-mail:

  • 基金资助:
    国家自然科学基金(52279065)

Study on Instability of Viscoelastic Liquid Jet in Homogeneous Wind Field

Tengfei ZHAO(), Hua ZHANG*()   

  1. School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2023-09-08 Online:2025-01-25 Published:2025-03-08
  • Contact: Hua ZHANG

摘要:

针对均匀风场作用下黏性可压缩射流稳定性问题, 基于线性稳定性理论, 建立均匀风场作用下黏性可压缩液体射流稳定性的数学模型, 并对数学模型的正确性及其求解方法进行验证。研究表明: 均匀风场对流体轴对称扰动和非轴对称扰动的影响作用相同, 且在扰动中占主要形式的是非轴对称扰动。气相压缩性使射流稳定性变差, 而液相压缩性对射流稳定性的影响微乎其微。均匀风场对射流稳定性的影响主要体现在: 顺风风场能够促进射流的稳定性, 抑制分裂与雾化现象的发生; 逆风风场能够抑制射流的稳定性, 促进分裂与雾化现象的发生。

关键词: 可压缩, 射流, 稳定性, 均匀风场, 色散方程

Abstract:

The present study aims to establish a mathematical model for the stability analysis of a viscous compressible liquid jet in a homogeneous wind field, utilizing linear stability theory. Furthermore, the validity of the proposed mathematical model and its solution method are subsequently verified. The findings indicate that the homogeneous wind field exerts an equal influence on both the axisymmetric disturbance and the non-axisymmetric disturbance, with the latter being the predominant form of disturbance. The compressibility of the gas phase has a detrimental effect on the stability of jet flow, while the compressibility of the liquid phase has negligible impact on the stability of jet flow. The impact of a homogeneous wind field on jet stability is primarily manifested in two key dimensions. The presence of a tailwind field has the potential to enhance the stability of jets and impede the likelihood of splitting and atomization. The presence of the deadwind field has the potential to diminish the stability of the jet flow and facilitate the occurrence of splitting and atomization.

Key words: compressible, jet, stability, homogeneous wind field, dispersion equation