Chinese Journal of Computational Physics ›› 2024, Vol. 41 ›› Issue (3): 357-366.DOI: 10.19596/j.cnki.1001-246x.8714
Previous Articles Next Articles
Wenmin HAN1(), Yaodong DAI1,*(
), Chuqing YAO1, Jiaxiang TIAN1, Danfeng JIANG2, Yifan ZHOU1
Received:
2023-02-24
Online:
2024-05-25
Published:
2024-05-25
Contact:
Yaodong DAI
CLC Number:
Wenmin HAN, Yaodong DAI, Chuqing YAO, Jiaxiang TIAN, Danfeng JIANG, Yifan ZHOU. Application of Genetic Algorithm to Optimal Design of Shielding Materials for Neutron-γ Mixed Radiation Fields[J]. Chinese Journal of Computational Physics, 2024, 41(3): 357-366.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8714
Parameter type | Set |
Number of layers | 4(Two hidden layers) |
Training function | Trainlm |
Transfer function | Tansig、logsig、purelin |
Training sets∶Verification set∶Testing sets | 7∶1.5∶1.5 |
Learning rate | 0.1 |
Table 1 Setting of neural network parameters
Parameter type | Set |
Number of layers | 4(Two hidden layers) |
Training function | Trainlm |
Transfer function | Tansig、logsig、purelin |
Training sets∶Verification set∶Testing sets | 7∶1.5∶1.5 |
Learning rate | 0.1 |
辐射环境 | 源数据 |
gn0.05 | 热中子源+0.05 MeV γ射线 |
gn0.1 | 热中子源+0.1 MeV γ射线 |
gn0.5 | 热中子源+0.5 MeV γ射线 |
gn1 | 热中子源+1 MeV γ射线 |
gn1.5 | 热中子源+1.5 MeV γ射线 |
gn2 | 热中子源+2 MeV γ射线 |
gn2.5 | 热中子源+2.5 MeV γ射线 |
gn3 | 热中子源+3 MeV γ射线 |
gn | 热中子源+0.05、0.1、0.5、1、1.5 MeV γ射线 |
Table 2 The definition of composite radiation environment
辐射环境 | 源数据 |
gn0.05 | 热中子源+0.05 MeV γ射线 |
gn0.1 | 热中子源+0.1 MeV γ射线 |
gn0.5 | 热中子源+0.5 MeV γ射线 |
gn1 | 热中子源+1 MeV γ射线 |
gn1.5 | 热中子源+1.5 MeV γ射线 |
gn2 | 热中子源+2 MeV γ射线 |
gn2.5 | 热中子源+2.5 MeV γ射线 |
gn3 | 热中子源+3 MeV γ射线 |
gn | 热中子源+0.05、0.1、0.5、1、1.5 MeV γ射线 |
Parameter type | Set |
Population size | 100 |
Number of iterations | 100 |
Generation gap | 0.9 |
Crossover rate | 0.8 |
Mutation rate | 0.01 |
Table 3 Setting of genetic algorithm parameters
Parameter type | Set |
Population size | 100 |
Number of iterations | 100 |
Generation gap | 0.9 |
Crossover rate | 0.8 |
Mutation rate | 0.01 |
Fig.11 (a) Results of the dose equivalent from neural network and Monte Carlo program under the optimal ratio of filler ratio in various radiation environments; (b) optimum ratio of filler in various radiation environments
Fig.12 The optimum ratio of filler in various radiation environments with different k values (a)gn0.05; (b) gn0.1; (c) gn0.5; (d) gn1; (e) gn1.5; (f) gn2; (g) gn2.5; (h) gn3
核素 | 峰位能量/keV | 全能峰净计数 |
Co-60 | 1 332 | 1 106 |
I-134 | 884 | 557 |
Cs-137 | 662 | 1 204 |
Xe-133 | 81 | 3 873 |
Table 4 The measured peak energy and net count of each nuclide in nuclear power environment
核素 | 峰位能量/keV | 全能峰净计数 |
Co-60 | 1 332 | 1 106 |
I-134 | 884 | 557 |
Cs-137 | 662 | 1 204 |
Xe-133 | 81 | 3 873 |
WO3/Bi2O3/Gd2O3/B4C | Hn/10-12Sv | Hnγ/10-12Sv | Hγ/10-12Sv | H总/10-12Sv |
0.9/0/0/0.1 | 1.130 × 10-3 | 1.101 × 10-2 | 1.273 × 10-2 | 2.487 × 10-2 |
0/0/0.9/0.1 | 5.398 × 10-8 | 1.034 × 10-1 | 1.278 × 10-2 | 1.161 × 10-1 |
0.4/0.5/0/0.1 | 9.214 × 10-4 | 9.957 × 10-3 | 1.262 × 10-2 | 2.350 × 10-2 |
0/0.5/0.4/0.1 | 6.206 × 10-7 | 9.879 × 10-2 | 1.265 × 10-2 | 1.114 × 10-1 |
0.3/0.3/0.3/0.1 | 1.644 × 10-6 | 9.759 × 10-2 | 1.268 × 10-2 | 1.103 × 10-1 |
0/0/0/1 | 1.910 × 10-6 | 1.241 × 10-2 | 1.443 × 10-2 | 2.684 × 10-2 |
0/0.7/0/0.3 | 4.232 × 10-5 | 1.023 × 10-2 | 1.310 × 10-2 | 2.337 × 10-2 |
0/0.8/0/0.2 | 1.333 × 10-4 | 9.697 × 10-3 | 1.286 × 10-2 | 2.269 × 10-2 |
0/0.89/0/0.11 | 6.145 × 10-4 | 9.141 × 10-3 | 1.263 × 10-2 | 2.239 × 10-2 |
0/0.9/0/0.1 | 7.630 × 10-4 | 9.060 × 10-3 | 1.261 × 10-2 | 2.243 × 10-2 |
0/1/0/0 | 1.965 × 10-2 | 6.823 × 10-6 | 1.231 × 10-2 | 3.196 × 10-2 |
Table 5 Several dose equivalents of different filler ratio in Monte Carlo method transport
WO3/Bi2O3/Gd2O3/B4C | Hn/10-12Sv | Hnγ/10-12Sv | Hγ/10-12Sv | H总/10-12Sv |
0.9/0/0/0.1 | 1.130 × 10-3 | 1.101 × 10-2 | 1.273 × 10-2 | 2.487 × 10-2 |
0/0/0.9/0.1 | 5.398 × 10-8 | 1.034 × 10-1 | 1.278 × 10-2 | 1.161 × 10-1 |
0.4/0.5/0/0.1 | 9.214 × 10-4 | 9.957 × 10-3 | 1.262 × 10-2 | 2.350 × 10-2 |
0/0.5/0.4/0.1 | 6.206 × 10-7 | 9.879 × 10-2 | 1.265 × 10-2 | 1.114 × 10-1 |
0.3/0.3/0.3/0.1 | 1.644 × 10-6 | 9.759 × 10-2 | 1.268 × 10-2 | 1.103 × 10-1 |
0/0/0/1 | 1.910 × 10-6 | 1.241 × 10-2 | 1.443 × 10-2 | 2.684 × 10-2 |
0/0.7/0/0.3 | 4.232 × 10-5 | 1.023 × 10-2 | 1.310 × 10-2 | 2.337 × 10-2 |
0/0.8/0/0.2 | 1.333 × 10-4 | 9.697 × 10-3 | 1.286 × 10-2 | 2.269 × 10-2 |
0/0.89/0/0.11 | 6.145 × 10-4 | 9.141 × 10-3 | 1.263 × 10-2 | 2.239 × 10-2 |
0/0.9/0/0.1 | 7.630 × 10-4 | 9.060 × 10-3 | 1.261 × 10-2 | 2.243 × 10-2 |
0/1/0/0 | 1.965 × 10-2 | 6.823 × 10-6 | 1.231 × 10-2 | 3.196 × 10-2 |
1 |
赵盛, 霍志鹏, 钟国强, 等. 中子及伽马射线复合屏蔽材料的研究进展[J]. 功能材料, 2021, 52 (3): 3001- 3015.
DOI |
2 | 白鸿伟, 李达, 郭寻, 等. 基于蒙特卡罗方法的复合材料辐射屏蔽设计[J]. 辐射防护, 2022, 42 (1): 41- 47. |
3 | 霍志鹏, 赵盛, 钟国强, 等. 一种中子及伽马射线复合屏蔽材料及其制备方法: CN202110522142.4[P]. 2021-08-03. |
4 |
YILMAZ S N , AKBAY İ K , ÖZDEMIR T . A metal-ceramic-rubber composite for hybrid gamma and neutron radiation shielding[J]. Radiation Physics and Chemistry, 2021, 180, 109316.
DOI |
5 |
MASKOOKI A , DEB K , KALLIO M . A customized genetic algorithm for bi-objective routing in a dynamic network[J]. European Journal of Operational Research, 2022, 297 (2): 615- 629.
DOI |
6 |
BEKESIENE S , MEIDUTE-KAVALIAUSKIENE I , VASILIAUSKIENE V . Accurate prediction of concentration changes in ozone as an air pollutant by multiple linear regression and artificial neural networks[J]. Mathematics, 2021, 9 (4): 356.
DOI |
7 |
CHEN Huiwei , LIU Shumei , MAGOMEDOV R M , et al. Optimization of inflow performance relationship curves for an oil reservoir by genetic algorithm coupled with artificial neural-intelligence networks[J]. Energy Reports, 2021, 7, 3116- 3124.
DOI |
8 |
SAYYED M I , AKMAN F , GEÇIBESLER I H , et al. Measurement of mass attenuation coefficients, effective atomic numbers, and electron densities for different parts of medicinal aromatic plants in low-energy region[J]. Nuclear Science and Techniques, 2018, 29 (10): 144.
DOI |
9 |
VERDIPOOR K , ALEMI A , MESBAHI A . Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 micro and nano-particles for radiation shielding[J]. Radiation Physics and Chemistry, 2018, 147, 85- 90.
DOI |
10 | 李江苏, 戴耀东, 张瑜, 等. 聚丙烯酸钐/环氧树脂辐射防护材料的制备工艺及性能[J]. 原子能科学技术, 2011, 45 (1): 117- 123. |
11 | 李环宇. 小型热中子照相系统关键部件的仿真与设计[D]. 长春: 东北师范大学, 2022. |
12 |
LI Changyuan , XIA Xiaobin , CAI Jun , et al. Influence analysis of B4C content on the neutron shielding performance of B4C/Al[J]. Radiation Physics and Chemistry, 2023, 204, 110684.
DOI |
13 |
FENSIN M L , UMBEL M . Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations[J]. Progress in Nuclear Energy, 2015, 85, 719- 728.
DOI |
14 | 李洪, 章立新, 任燕, 等. 基于灰色关联分析的BP神经网络对混流闭式冷却塔出水温度的预测[J]. 计算物理, 2022, 39 (1): 53- 59. |
15 |
WU Yuezhong , WU Denghao , FEI Minghao , et al. Application of GA-BPNN on estimating the flow rate of a centrifugal pump[J]. Engineering Applications of Artificial Intelligence, 2023, 119, 105738.
DOI |
16 |
颜帆, 卢玫. 材料热物性与热源强度辨识的改进遗传算法[J]. 计算物理, 2015, 32 (5): 623- 630.
DOI |
17 | 杨师俨, 何曼丽, 蒋丹枫, 等. 反应堆235U裂变源辐射防护材料的优化设计[J]. 计算物理, 2017, 34 (1): 73- 81. |
18 |
CHEN Xiwen , LI Xiaoqian , LI Ruiqing . Ultrasonic power load forecasting based on BP neural network[J]. Journal of the Institution of Engineers (India): Series C, 2020, 101 (2): 383- 390.
DOI |
19 | 杨寿海, 陈义学, 王伟金, 等. 多目标辐射屏蔽优化设计方法[J]. 原子能科学技术, 2012, 46 (1): 79- 83. |
20 | 陈法国, 李国栋, 杨明明, 等. 基于遗传算法的中子屏蔽材料组分优化研究[J]. 辐射防护, 2020, 40 (1): 38- 44. |
21 | 王玉容, 赵勇, 蒋明忠, 等. 功能/结构一体化中子屏蔽材料的研究现状[J]. 精密成形工程, 2019, 11 (3): 166- 172. |
22 | LI Yuli , WANG Wenxian , ZHOU Jun , et al. 10B areal density: A novel approach for design and fabrication of B4C/6061Al neutron absorbing materials[J]. Journal of Nuclear Materials, 2017, 487, 238- 246. |
[1] | LI Qin, ZHANG Min, XU Ying. P-SV Wave Prestack Inversion Based on Hybrid Algorithm [J]. Chinese Journal of Computational Physics, 2024, 41(3): 380-391. |
[2] | Chen LIU, Zhongjun LIU, Minghui ZHAO, Qingbo AO. Grand Canonical Monte Carlo Simulation Study of Water Adsorption Behavior and Isosteric Adsorption Heat in Carbon Nanotubes [J]. Chinese Journal of Computational Physics, 2024, 41(2): 203-213. |
[3] | Qiannan HUANG, Yujie HE, Chunlong FAN, Changlin WEN, Yuchen XUE, Shuiyuan CHEN, Zhigao HUANG, Qingying YE. Effect of Thickness of Stacked Co Nanoring Arrays on Magnetic Properties [J]. Chinese Journal of Computational Physics, 2024, 41(2): 232-238. |
[4] | Ziyan LIU, Liang XU. Neural Network Models of Compressible Multi-Medium Flows Embedded with Physical Constraints [J]. Chinese Journal of Computational Physics, 2023, 40(6): 761-769. |
[5] | Lijun LIU, Duqu WEI. Synchronization of Memristive Rulkov Neural Networks [J]. Chinese Journal of Computational Physics, 2023, 40(3): 389-400. |
[6] | Yilin YAO, Zhenbo WU, Bin QIAO. Monte Carlo Code for Neutron Calculation Driven by Intense Laser with Pitcher-catcher Scheme [J]. Chinese Journal of Computational Physics, 2023, 40(2): 241-247. |
[7] | Zixiang YAN, Wei KANG, Weiyan ZHANG, Xiantu HE. Progress in Study of Equation of State of Warm Dense Matter with Path-integral Monte Carlo Method [J]. Chinese Journal of Computational Physics, 2023, 40(2): 258-274. |
[8] | Weiguang LIANG, Jianbing SANG, Hongyan TIAN, Wenjie DUAN, Yaping TAO, Fengtao LI. Flow Characteristic Analysis of Pipe Flow and Turbulence Model Coefficient Correction Based on Data-driven [J]. Chinese Journal of Computational Physics, 2023, 40(1): 57-66. |
[9] | Liang SUN, Jia LUO, Yinhu QIAO. Initial Offset Boosting Dynamics in A Memristive Hopfield Neural Network and Its Application in Image Encryption [J]. Chinese Journal of Computational Physics, 2023, 40(1): 106-116. |
[10] | Guozheng WU, Fajie WANG, Suifu CHENG, Chengxin ZHANG. Numerical Simulation of Forward and Inverse Problems of Internal Sound Field Based on Physics-informed Neural Network [J]. Chinese Journal of Computational Physics, 2022, 39(6): 687-698. |
[11] | Cong XIAO, Shicheng ZHANG, Xinfang MA, Tong ZHOU, Tengfei HOU. Model-reduced Autoregressive Neural Network for Parameter Inversion [J]. Chinese Journal of Computational Physics, 2022, 39(5): 564-578. |
[12] | Can HUANG, Leng TIAN, Heng-li WANG, Jia-xin WANG, Li-li JIANG. A Single Well Production Forecasting Model of Reservoir Based on Conditional Generative Adversarial Net [J]. Chinese Journal of Computational Physics, 2022, 39(4): 465-478. |
[13] | Jian PAN, Zhaoli GUO, Songze CHEN. A Compound Neural Network for Learning Partial Differential Equations from Noisy Data [J]. Chinese Journal of Computational Physics, 2022, 39(2): 223-232. |
[14] | Lihong TANG, Zongmei HE, Yanli YAO. Dynamical Analysis and Circuit Implementation of a Memristive Hopfield Neural Network [J]. Chinese Journal of Computational Physics, 2022, 39(2): 244-252. |
[15] | Hong LI, Lixin ZHANG, Yan REN, Ming GAO, Jingnan LIU. Prediction of Water Temperature of Mixed-flow Closed Cooling Tower Based on BP Neural Network and Grey Correlation Analysis [J]. Chinese Journal of Computational Physics, 2022, 39(1): 53-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.