计算物理 ›› 2023, Vol. 40 ›› Issue (3): 369-375.DOI: 10.19596/j.cnki.1001-246x.8590

• • 上一篇    下一篇

Ag基合金弹性性能与电子结构的第一性原理研究

胡佳1(), 易洲1,2,3,*(), 文大东1, 邓永和1, 谢云2, 戚双祥2, 邱建美2, 李政一2, 彭平3   

  1. 1. 湖南工程学院计算科学与电子学院, 湖南 湘潭 411104
    2. 宁波东大神乐电工合金有限公司, 浙江 宁波 300202
    3. 湖南大学材料科学与工程学院, 湖南 长沙 410082
  • 收稿日期:2022-07-12 出版日期:2023-05-25 发布日期:2023-07-22
  • 通讯作者: 易洲
  • 作者简介:

    胡佳,女,硕士研究生,研究方向为功能电子材料与器件,E-mail:

  • 基金资助:
    国家自然科学基金(52071136); 湖南省教育厅项目(21C0578)

First-Principles Study on Elastic Properties and Electronic Structure of Ag-based Alloys

Jia HU1(), Zhou YI1,2,3,*(), Dadong WEN1, Yonghe DENG1, Yun XIE2, Shuangxiang QI2, Jianmei QIU2, Zhengyi LI2, Ping PENG3   

  1. 1. School of Computational Science & Electronics, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
    2. Ningbo Dongda Shenle Electric Alloy Co.Ltd., Ningbo, Zhejiang 300202, China
    3. School of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
  • Received:2022-07-12 Online:2023-05-25 Published:2023-07-22
  • Contact: Zhou YI

摘要:

基于第一性原理计算, 探究合金元素Cu、Zr、W、Cr、Sn、Ni、In、Zn、Ir掺杂Ag基合金中的点缺陷形成焓H, 弹性常数C11C12C44, 体模量B, 剪切模量G, 杨氏模量E及泊松比γ等参数表征材料的强韧度。分析不同合金原子掺杂进入Ag基体的难易程度, 以及合金原子和Ag原子价电子差值△V对Ag基合金弹性性能的作用。随合金原子和Ag原子价电子差值△V的增大, 对应Ag基合金总体抵抗塑性变形、抵抗剪切变形及在剪切变形时保持晶体结构稳定的能力均能够增强。进一步采用掺杂合金原子的Ag基合金在{1 0 0}面投影的差分电荷密度图显示了原子成键前后电荷转移的空间分布情况。结果发现: Ag基合金弹性性能均能增强的原因可归功于合金原子与Ag原子间的强键结合。

关键词: Ag基合金, 第一性原理, 弹性性能, 差分电荷密度

Abstract:

Based on the first principles, the physical parameters such as point defect formation enthalpy H, elastic constants C11, C12, C44, bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio γ that characterize the strength and toughness of materials in Ag-based alloys doped with alloying elements such as Cu, Zr, W, Cr, Sn, Ni, In, Zn, Ir were calculated in this paper. The difficulty of doping different alloy atoms in Ag matrix and the effects of the valence electron difference ΔV between the alloy atom and the Ag atom on the elastic properties of the Ag-based alloy were analyzed. With the increase of the ΔV, the ability of Ag-based alloys to resist plastic deformation, shear deformation and maintain crystal structure stability during shear deformation can be enhanced. Furthermore, differential charge density of Ag-based alloy projected on the {1 0 0} plane shows the spatial distribution of charge transfer before and after bonding. It is found that the enhanced elastic properties of Ag-base alloy can be attributed to the strong bonding between the alloy atom and Ag atom.

Key words: Ag-based alloys, first principles, elastic properties, differential charge density