计算物理 ›› 2024, Vol. 41 ›› Issue (4): 463-471.DOI: 10.19596/j.cnki.1001-246x.8755

•   • 上一篇    下一篇

微管流中双囊泡惯性迁移的有限元分析

刘烨琳(), 郝鹏, 丁明明()   

  1. 广东工业大学轻工化工学院, 广东 广州 510006
  • 收稿日期:2023-05-04 出版日期:2024-07-25 发布日期:2024-08-24
  • 通讯作者: 丁明明
  • 作者简介:刘烨琳, 女, 本科, 研究方向为凝聚态微结构及其动力学, E-mail: 1154079648@qq.com

Finite Element Analysis of Inertial Migration of Double Vesicles in Microtubular Flow

Yelin LIU(), Peng HAO, Mingming DING()   

  1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
  • Received:2023-05-04 Online:2024-07-25 Published:2024-08-24
  • Contact: Mingming DING

摘要:

采用基于流固耦合的有限元方法, 对二维模型中的双囊泡组合在微管流中惯性迁移现象进行系统研究。研究结果表明: 初始位置对称的两个圆形囊泡惯性迁移的平衡位置始终关于管道中央对称, 且随着雷诺数(Re)的增加, 其平衡位置会越来越靠近管道中央。其次, 对由圆形囊泡和椭圆形囊泡组成的双囊泡体系, 当圆形囊泡和椭圆形囊泡初始位置分别位于管道两侧时, 圆形囊泡惯性迁移的平衡位置随着雷诺数的增加几乎不变, 但椭圆形囊泡向管道中心偏移并跨过中心向管道另一侧偏移, 最后随着雷诺数的增加而缓慢向壁面移动, 并在Re≥500时, 椭圆形囊泡的径向位移达到最大值。当圆形囊泡和椭圆形囊泡位于管道同侧时, 随着雷诺数的增加, 无论椭圆形囊泡是前置或后置, 其最终平衡位置更接近管道壁面。根据囊泡的受力阐释了其背后的物理机制, 相关结果可促进惯性微流控技术在囊泡的精准分离和操控等方面的应用。

关键词: 双囊泡, 惯性迁移, 有限元

Abstract:

The finite element method based on fluid-structure interaction is used to systematically study the inertial migration of double vesicles in microtubule flow with a two-dimensional model. The results show that the equilibrium position of inertial migration of two circular vesicles with initial symmetry is always symmetric about the center of the channel, and with the increase of Reynolds number, the equilibrium position will be closer and closer to the center of the channel. Secondly, for the double vesicle system composed of circular vesicles and elliptic vesicles, when the initial positions of circular vesicles and elliptic vesicles are located on both sides of the channel, the equilibrium position of circular vesicle inertial migration is almost constant with the increase of Reynolds number, but the elliptic vesicles shift to the center of the channel and across the center to the other side of the channel, and finally move slowly to the wall with the increase of Reynolds number, and at Re≥500, the radial displacement of elliptic vesicle reaches the maximum value. When the circular and elliptical vesicles are located on the same side of the channel, the final equilibrium position is closer to the wall of the channel with the increase of Reynolds number, regardless of whether the elliptic vesicles are anterior or posterior. The present study elucidates the physical mechanism behind the vesicles based on their forces, and the related results can facilitate the application of inertial microfluidics in the precise separation and manipulation of vesicles.

Key words: double vesicles, inertial migration, finite element

中图分类号: