计算物理 ›› 2024, Vol. 41 ›› Issue (4): 480-486.DOI: 10.19596/j.cnki.1001-246x.8738
收稿日期:
2023-03-28
出版日期:
2024-07-25
发布日期:
2024-08-24
通讯作者:
陶红帅
作者简介:
张仁杰, 男, 本科, 研究方向为凝聚态物理和计算物理, E-mail: zrj_imut@163.com
基金资助:
Renjie ZHANG(), Hongshuai TAO(
)
Received:
2023-03-28
Online:
2024-07-25
Published:
2024-08-24
Contact:
Hongshuai TAO
摘要:
采用密度泛函理论的第一性原理计算, 研究了Mn、Sn掺杂α-CsPbI3体系的缺陷形成能、转变能级和载流子非辐射复合系数。研究发现: Mn掺入CsPbI3会使体系的晶格常数明显减小, Sn掺杂体系晶格常数略有减小, 提高了材料的稳定性。两种体系的深能级缺陷均靠近导带, 主要从导带中俘获电子。Mn、Sn元素的掺杂改善了完美体系声子能量分布情况, 增强了材料的热输运能力。Sn掺杂体系空穴的非辐射复合系数远高于Mn掺杂体系, 且两种掺杂体系非辐射复合系数均高于含本征缺陷Ii和ICs的CsPbI3, 因此杂质可能引入了非辐射复合中心。这些研究结果为Mn、Sn掺杂CsPbI3体系在实验上提供了数据支持, 为CsPbI3钙钛矿的掺杂改性提供了理论指导。
中图分类号:
张仁杰, 陶红帅. Mn、Sn掺杂无机钙钛矿CsPbI3非辐射复合的第一性原理计算[J]. 计算物理, 2024, 41(4): 480-486.
Renjie ZHANG, Hongshuai TAO. Nonradiative Recombination for Mn and Sn Doped in Inorganic Perovskite CsPbI3 by First-principles[J]. Chinese Journal of Computational Physics, 2024, 41(4): 480-486.
Perovskite materials | Cs8Pb8I24 | Cs8MnPb7I24 | Cs8SnPb7I24 |
GGA-PBE | 1.276 | 1.263 | 1.273 |
Other Work | 0.632[ | 0.644[ | 0.627[ |
0.640[ | |||
Exp. | 0.629[ |
表1 PBE泛函优化后CsPbI3体系的晶格常数(nm)
Table 1 Lattice constants of CsPbI3 system after PBE functional optimization (nm)
Perovskite materials | Cs8Pb8I24 | Cs8MnPb7I24 | Cs8SnPb7I24 |
GGA-PBE | 1.276 | 1.263 | 1.273 |
Other Work | 0.632[ | 0.644[ | 0.627[ |
0.640[ | |||
Exp. | 0.629[ |
图3 CsPbI3掺杂体系的缺陷形成能(a)Cs8MnPb7I24; (b) Cs8SnPb7I24
Fig.3 Formation energy and transition level of CsPbI3 doping system (a) Cs8MnPb7I24; (b) Cs8SnPb7I24
1 |
SUTTON R J , EPERON G E , MIRANDA L , et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells[J]. Advanced Energy Materials, 2016, 6 (8): 1502458.
DOI |
2 |
LU Haizhou , KRISHNA A , ZAKEERUDDIN S M , et al. Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells[J]. iScience, 2020, 23 (8): 101359.
DOI |
3 |
JUNG E H , JEON N J , PARK E Y , et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)[J]. Nature, 2019, 567 (7749): 511- 515.
DOI |
4 |
蔡鲁刚. 畸形钙钛矿DyMnO3电子结构与光学性质的第一性原理研究[J]. 计算物理, 2018, 35 (3): 350- 356.
DOI |
5 |
韩玉阁, 宣益民. 卫星热设计参数的灵敏度分析[J]. 计算物理, 2004, 21 (5): 455- 460.
DOI |
6 |
KOJIMA A , TESHIMA K , SHIRAI Y , et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131 (17): 6050- 6051.
DOI |
7 |
CHE Yuhang , LIU Zhike , DUAN Yuwei , et al. Hydrazide derivatives for defect passivation in pure CsPbI3 perovskite solar cells[J]. Angewandte Chemie, 2022, 61 (33): e202205012.
DOI |
8 |
SARRITZU V , SESTU N , MARONGIU D , et al. Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites[J]. Scientific Reports, 2017, 7, 44629.
DOI |
9 |
CONINGS B , DRIJKONINGEN J , GAUQUELIN N , et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite[J]. Advanced Energy Materials, 2015, 5 (15): 1500477.
DOI |
10 |
SALADO M , CALIO L , BERGER R , et al. Influence of the mixed organic cation ratio in lead iodide based perovskite on the performance of solar cells[J]. Physical Chemistry Chemical Physics, 2016, 18 (39): 27148- 27157.
DOI |
11 | CHIANG C H , NAZEERUDDIN M K , GRÄTZEL M , et al. The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells[J]. Energy & Environmental Science, 2017, 10 (3): 808- 817. |
12 | BERHE T A , SU W N , CHEN C H , et al. Organometal halide perovskite solar cells: Degradation and stability[J]. Energy & Environmental Science, 2016, 9 (2): 323- 356. |
13 |
CHEN Lijun , WAN Li , LI Xiaodong , et al. Inverted all-inorganic CsPbI2Br perovskite solar cells with promoted efficiency and stability by nickel incorporation[J]. Chemistry of Materials, 2019, 31 (21): 9032- 9039.
DOI |
14 |
WANG Dan , WU Dan , DONG Di , et al. Polarized emission from CsPbX3 perovskite quantum dots[J]. Nanoscale, 2016, 8 (22): 11565- 11570.
DOI |
15 |
ZHANG Ying , ZHU Haiou , ZHENG Jilin , et al. Performance enhancement of all-inorganic perovskite quantum dots (CsPbX3) by UV-NIR laser irradiation[J]. The Journal of Physical Chemistry C, 2019, 123 (7): 4502- 4511.
DOI |
16 |
FILIP M R , EPERON G E , SNAITH H J , et al. Steric engineering of metal-halide perovskites with tunable optical band gaps[J]. Nature Communications, 2014, 5, 5757.
DOI |
17 |
MARRONNIER A , ROMA G , BOYER-RICHARD S , et al. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells[J]. ACS Nano, 2018, 12 (4): 3477- 3486.
DOI |
18 |
FROLOVA L A , ANOKHIN D V , PIRYAZEV A A , et al. Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2[J]. The Journal of Physical Chemistry Letters, 2017, 8 (1): 67- 72.
DOI |
19 |
YUAN Ye , YAN Genghua , HONG Ruijiang , et al. Quantifying efficiency limitations in all-inorganic halide perovskite solar cells[J]. Advanced Materials, 2022, 34 (21): e2108132.
DOI |
20 |
ZHANG Taiyang , IBRAHIM DAR M , LI Ge , et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells[J]. Science Advances, 2017, 3 (9): e1700841.
DOI |
21 |
YE Qiufeng , ZHAO Yang , MU Shaiqiang , et al. Cesium Lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination[J]. Advanced Materials, 2021, 33 (10): e2100344.
DOI |
22 |
YE Qiufeng , MA Fei , ZHAO Yang , et al. Stabilizing γ-CsPbI3 perovskite via phenylethylammonium for efficient solar cells with open-circuit voltage over 1.3 V[J]. Small, 2020, 16 (50): 2005246.
DOI |
23 |
ZHANG Xie , TURIANSKY M E , VAN DE WALLE C G . All-inorganic halide perovskites as candidates for efficient solar cells[J]. Cell Reports. Physical Science, 2021, 2 (10): 100604.
DOI |
24 |
LIANG Yuhang , CUI Xiangyuan , LI Feng , et al. Hydrogen-induced nonradiative recombination in all-inorganic CsPbI3 perovskite solar cells[J]. Solar RRL, 2022, 6 (8): 2200211.
DOI |
25 |
JENA A K , KULKARNI A , SANEHIRA Y , et al. Stabilization of α-CsPbI3 in ambient room temperature conditions by incorporating Eu into CsPbI3[J]. Chemistry of Materials, 2018, 30 (19): 6668- 6674.
DOI |
26 |
SHEN Xinyu , ZHANG Yu , KERSHAW S V , et al. Zn-Alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices[J]. Nano Letters, 2019, 19 (3): 1552- 1559.
DOI |
27 |
DEHINGIA A , DAS U , ROY A . Compositional engineering in α-CsPbI3 toward the efficiency and stability enhancement of all inorganic perovskite solar cells[J]. ACS Applied Energy Materials, 2022, 5 (10): 12099- 12108.
DOI |
28 |
YAO Zhun , ZHAO Wangen , CHEN Sijie , et al. Mn doping of CsPbI3 film towards high-efficiency solar cell[J]. ACS Applied Energy Materials, 2020, 3 (6): 5190- 5197.
DOI |
29 |
SHI Lin , WANG Linwang . Ab initio calculations of deep-level carrier nonradiative recombination rates in bulk semiconductors[J]. Physical Review Letters, 2012, 109 (24): 245501.
DOI |
30 |
GIANNOZZI P , BARONI S , BONINI N , et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials[J]. Journal of Physics: Condensed Matter, 2009, 21 (39): 395502.
DOI |
31 |
JIA Weile , FU Jiyun , CAO Zongyan , et al. Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines[J]. Journal of Computational Physics, 2013, 251, 102- 115.
DOI |
32 |
PAYNE M C , TETER M P , ALLAN D C , et al. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients[J]. Reviews of Modern Physics, 1992, 64 (4): 1045.
DOI |
33 |
LEJAEGHERE K , BIHLMAYER G , BJÖRKMAN T , et al. Reproducibility in density functional theory calculations of solids[J]. Science, 2016, 351 (6280): aad3000.
DOI |
34 |
HEYD J , SCUSERIA G E , ERNZERHOF M . Hybrid functionals based on a screened Coulomb potential[J]. The Journal of Chemical Physics, 2003, 118 (18): 8207- 8215.
DOI |
35 |
SHI Lin , XU Ke , WANG Linwang . Comparative study of ab initio nonradiative recombination rate calculations under different formalisms[J]. Physical Review B, 2015, 91 (20): 205315.
DOI |
36 |
DING X , CHEN H , WU Y , et al. Triple cation additive NH3+C2H4NH2+C2H 4NH3+-induced phase-stable inorganic α-CsPbI3 perovskite films for use in solar cells[J]. Journal of Materials Chemistry A, 2018, 6 (37): 18258- 18266.
DOI |
37 |
TROTS D M , MYAGKOTA S V . High-temperature structural evolution of caesium and rubidium triiodoplumbates[J]. Journal of Physics and Chemistry of Solids, 2008, 69 (10): 2520- 2526.
DOI |
38 |
LONG Lixia , CAO Dam , FEI Jiapeng , et al. Effect of surface intrinsic defects on the structural stability and electronic properties of the all-inorganic halide perovskite CsPbI3(001) film[J]. Chemical Physics Letters, 2019, 734, 136719.
DOI |
39 |
ZHENG Haoyan , LIANG Pei , LEVIN A A , et al. First principles study on organic cation A-site doping in CsPbI3 perovskite[J]. Computational Materials Science, 2022, 203, 111090.
DOI |
40 |
HUANG Xin , HU Jingcong , BI Chenghao , et al. B-site doping of CsPbI3 quantum dot to stabilize the cubic structure for high-efficiency solar cells[J]. Chemical Engineering Journal, 2021, 421, 127822.
DOI |
41 |
SA Rongjian , LUO Benlong , MA Zuju , et al. Revealing the influence of B-site doping on the physical properties of CsPbI3: A DFT investigation[J]. Journal of Solid State Chemistry, 2022, 309, 122956.
DOI |
42 | 张海峰, 徐文兰. 哈密顿的维度相关性与声子态密度的卷积律[J]. 计算物理, 1995, 12 (1): 79- 83. |
43 |
LI Jiqiang , ZHU Haifeng , ZHANG Yueyu , et al. Large carrier-capture rate of PbI antisite in CH3NH3PbI3 induced by heavy atoms and soft phonon modes[J]. Physical Review B, 2017, 96 (10): 104103.
DOI |
[1] | 周梦, 陶应奇, 周晓云, 张宇龙, 程才. 含能离子盐TKX-50状态方程及热力学性质的第一性原理研究[J]. 计算物理, 2024, 41(4): 487-493. |
[2] | 张庆洲, 范大伟, 刘凌虹. 合金原子对L12型Al-Zr-X三元铝合金表面电偶腐蚀影响的第一性原理研究[J]. 计算物理, 2023, 40(6): 699-711. |
[3] | 胡佳, 易洲, 文大东, 邓永和, 谢云, 戚双祥, 邱建美, 李政一, 彭平. Ag基合金弹性性能与电子结构的第一性原理研究[J]. 计算物理, 2023, 40(3): 369-375. |
[4] | 程翔, 冯军伟, EvgeniiTikhonov. Hf-Ta-C-N四元化合物的结构、力学及电子性质的第一性原理研究[J]. 计算物理, 2023, 40(1): 40-46. |
[5] | 严深浪, 项少辉, 龙孟秋. 锯齿型石墨烯纳米带结的自旋输运性质[J]. 计算物理, 2022, 39(6): 751-756. |
[6] | 罗强, 马智炜, 蒋冠臻, 邹江峰, 邱毅. Ge掺杂AlN电子和光学性质的第一性原理计算[J]. 计算物理, 2022, 39(5): 609-616. |
[7] | 王晓慧, 张平. 高压下FCC相金属氢结构稳定性和非谐效应的理论研究[J]. 计算物理, 2022, 39(2): 159-164. |
[8] | 房勇, 金永中, 陈建, 宗洪祥, 张丽英. 石墨烯厚度与其力-距离关系的实验和模拟研究[J]. 计算物理, 2021, 38(4): 441-446. |
[9] | 闫宇星, 张珏璇, 郑帅, 汪帆, 熊琳强. 间隙原子对ZnNb2O6光电特性影响的第一性原理研究[J]. 计算物理, 2021, 38(4): 447-455. |
[10] | 潘靖, 沈国华. 等价阴-阳离子共掺杂调节ZnO的能带结构及其光催化活性[J]. 计算物理, 2021, 38(3): 371-378. |
[11] | 张乐, 孙博, 宋海峰. 钚氧化物中氢行为的第一性原理研究[J]. 计算物理, 2020, 37(5): 595-602. |
[12] | 彭军辉. 三元层状陶瓷M-Al-N(M=Ti,Zr,Hf)的结构及力学性质的第一性原理模拟[J]. 计算物理, 2020, 37(5): 603-611. |
[13] | 赵一程, 郭俊宏, 胡芳仁. 应变对单层砷烯结构拉曼散射的影响[J]. 计算物理, 2020, 37(3): 365-370. |
[14] | 温淑敏, 姚世伟, 赵春旺, 王细军, 李继军. 应变对纤锌矿结构GaN电子结构及光学性质的影响[J]. 计算物理, 2020, 37(1): 119-126. |
[15] | 熊宗刚, 杜娟, 张现周. 二维GeSe纳米片五族和七族原子掺杂的受主和施主杂质态[J]. 计算物理, 2019, 36(6): 733-741. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发