计算物理 ›› 2009, Vol. 26 ›› Issue (1): 135-140.

• 研究论文 • 上一篇    下一篇

薄板弯曲问题的变分-差分方法

谢文昊1,2, 曲小钢2   

  1. 1. 西安石油大学理学院, 陕西 西安 710065;
    2. 西安建筑科技大学理学院, 陕西 西安 710055
  • 收稿日期:2007-08-09 修回日期:2007-12-04 出版日期:2009-01-25 发布日期:2009-01-25
  • 作者简介:谢文吴(1978-),女,辽宁锦州,讲师,硕士生,从事偏微分方程数值解方向的研究
  • 基金资助:
    陕西省教育厅专项科研基金(05JK239);西安建筑科技大学基础研究基金(03BR02)资助项目

Finite-difference Method for Thin Plate Bending

XIE Wenhao1,2, QU Xiaogang2   

  1. 1. School of Science, Xi'an Shiyou University, Xi'an 710065, China;
    2. School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China
  • Received:2007-08-09 Revised:2007-12-04 Online:2009-01-25 Published:2009-01-25

摘要: 从最小势能原理出发,使用变分-差分方法构造带有弯曲边梁的薄板的小挠度弯曲问题的差分格式,所得格式仅依赖板面网格结点,从而避免了由于引入虚拟网格结点而带来的问题;编制求解差分方程组的MATLAB程序,给出数值模拟结果.

关键词: 薄板, 弯曲问题, 边梁, 变分-差分方法, 数值模拟

Abstract: According to the principle of minimum potential energy, finite difference schemes for small deflection bending of thin elastic plates with edge beams are obtained with FDM based on the principle of variation.The schemes depend only on mesh points in plates .They avoid problems with fictitious mesh points.Difference equations are programed with MATLAB and numerical simulations are shown.

Key words: thin plate, bending problem, beam, finite-difference method based on principle of variation, numerical simulation

中图分类号: