计算物理 ›› 2024, Vol. 41 ›› Issue (2): 214-221.DOI: 10.19596/j.cnki.1001-246x.8700
收稿日期:
2022-02-07
出版日期:
2024-03-25
发布日期:
2024-04-03
通讯作者:
李公平
作者简介:
高旭东,男,博士研究生,研究方向为射线与物质相互作用,E-mail:gaoxd20@lzu.edu.cn
基金资助:
Xudong GAO(), Shuyi SUN, Wenjing WEI, Gongping LI(
)
Received:
2022-02-07
Online:
2024-03-25
Published:
2024-04-03
Contact:
Gongping LI
摘要:
利用分子动力学方法对金红石TiO2中O及Ti沿着不同方向的离位阈能进行模拟计算,结果表明:各方向O的离位阈能普遍低于Ti的离位阈能,O的离位阈能基本在27.50~77.50 eV之间,而Ti的离位阈能在90.00~120.00 eV之间。同时对能量为1.0、5.0和10.0 keV的O PKA及Ti PKA造成的级联辐照损伤进行探究,结果表明:能量小于10.0 keV的O PKA及Ti PKA产生的主要是点缺陷,且点缺陷的数量在0.10~0.20 ps内达到峰值,在经过数ps的演化后,超过90.0%以上的缺陷复合,只有不足10.0%的缺陷保留下来,即金红石TiO2中的缺陷在缺陷产生初期有较高的自我恢复能力。
中图分类号:
高旭东, 孙淑义, 魏雯静, 李公平. 金红石TiO2辐照损伤模拟研究[J]. 计算物理, 2024, 41(2): 214-221.
Xudong GAO, Shuyi SUN, Wenjing WEI, Gongping LI. A Simulation Study on Irradiation Damage of Rutile TiO2[J]. Chinese Journal of Computational Physics, 2024, 41(2): 214-221.
O-O | Ti-Ti | Ti-O | |
r1/nm | 0.02 | 0.04 | 0.06 |
r2/nm | 0.04 | 0.10 | 0.16 |
rc/nm | 0.65 |
表1 势函数参数表
Table 1 Potential parameters
O-O | Ti-Ti | Ti-O | |
r1/nm | 0.02 | 0.04 | 0.06 |
r2/nm | 0.04 | 0.10 | 0.16 |
rc/nm | 0.65 |
图3 DFP随PKA能量的变化关系(a)O PKA沿着[111]方向;(b)Ti PKA沿着[010]方向
Fig.3 The variation of DFP with PKA energy (a) O PKA along [111] direction; (b) Ti PKA along [010] direction
PKA direction | Ed/eV | |
O | Ti | |
[100] | 27.50±2.50、30±5.0[ | 92.50±2.50、115±5.0[ |
[010] | 50.00±2.50 | 100.00±2.50 |
[001] | 77.50±2.50、65±5.0[ | 90.00±2.50、80±5.0[ |
[110] | 67.50±2.50、55±5.0[ | 90.00±2.50、100±5.0[ |
[111] | 42.50±2.50、35±5.0[ | 120.00±2.50、160±5.0[ |
Avg.value | 19[ | 69[ |
表2 金红石TiO2中O原子及Ti原子Ed的计算结果
Table 2 Statistical results of Ed in rutile TiO2
PKA direction | Ed/eV | |
O | Ti | |
[100] | 27.50±2.50、30±5.0[ | 92.50±2.50、115±5.0[ |
[010] | 50.00±2.50 | 100.00±2.50 |
[001] | 77.50±2.50、65±5.0[ | 90.00±2.50、80±5.0[ |
[110] | 67.50±2.50、55±5.0[ | 90.00±2.50、100±5.0[ |
[111] | 42.50±2.50、35±5.0[ | 120.00±2.50、160±5.0[ |
Avg.value | 19[ | 69[ |
图4 缺陷数目随时间演化关系图(a) O PKA:1.0 keV;(b) Ti PKA:1.0 keV;(c) O PKA:5.0 keV;(d) Ti PKA:5.0 keV;(e) O PKA:10.0 keV;(f) Ti PKA:10.0 keV
Fig.4 Diagram of defect number evolution with time (a) O PKA: 1.0 keV; (b) Ti PKA: 1.0 keV; (c) O PKA: 5.0 keV; (d) Ti PKA: 5.0 keV; (e) O PKA: 10.0 keV; (f) Ti PKA: 10.0 keV
图5 5.0 keV的O PKA产生的缺陷演化趋势图(a) 0.05 ps;(b) 0.10 ps;(c) 0.15 ps;(d) 1.00 ps;(e) 10.00 ps;(f) 15.00 ps
Fig.5 Schematic diagrams of defect evolution by O PKA at 5.0 keV (a) 0.05 ps; (b) 0.10 ps; (c) 0.15 ps; (d) 1.00 ps; (e) 10.00 ps; (f) 15.00 ps
图6 5.0 keV的Ti PKA产生的缺陷演化趋势图(a) 0.05 ps;(b) 0.10 ps;(c) 0.15 ps;(d) 1.00 ps;(e) 10.00 ps;(f) 15.00 ps
Fig.6 Schematic diagrams of defect evolution by Ti PKA at 5.0 keV (a) 0.05 ps; (b) 0.10 ps; (c) 0.17 ps; (d) 1.00 ps; (e) 10.00 ps; (f) 15.00 ps
1 |
MATSUMOTO Y , MURAKAMI M , SHONO T , et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide[J]. Science, 2001, 291 (5505): 854- 856.
DOI |
2 |
WOLF S A , AWSCHALOM D D , BUHRMAN R A , et al. Spintronics: A spin-based electronics vision for the future[J]. Science, 2001, 294 (5546): 1488- 1495.
DOI |
3 | Li P Y , WU Z M , YE Q , et al. First-principles calculation of Mn-doped LiMgN diluted magnetic semiconductor[J]. Chinese Journal of Computational Physics, 2018, 35 (1): 103- 111. |
4 |
HIROHATA A , YAMADA K , NAKATANI Y , et al. Review on spintronics: Principles and device applications[J]. Journal of Magnetism and Magnetic Materials, 2020, 509, 166711.
DOI |
5 |
SONG C , ZHANG R Q , LIAO L Y , et al. Spin-orbit torques: Materials, mechanisms, performances, and potential applications[J]. Progress in Materials Science, 2021, 118, 100761.
DOI |
6 |
HUANG W Q , LIN R , CHEN W J , et al. High room-temperature magnetization in Co-doped TiO2 nanoparticles promoted by vacuum annealing for different durations[J]. Journal of Semiconductors, 2021, 42 (7): 072501.
DOI |
7 |
ZHAO Q A , WU P . Ferromagnetism induced by defects in Cr-doped TiO2 nanopowders[J]. Journal of Inorganic Materials, 2013, 28 (10): 1098- 1102.
DOI |
8 |
CHOUHAN L , SRIVASTAVA S K . Observation of room temperature d0 ferromagnetism, band-gap widening, zero dielectric loss and conductivity enhancement in Mg doped TiO2 (rutile+anatase) compounds for spintronics applications[J]. Journal of Solid State Chemistry, 2022, 307, 122828.
DOI |
9 |
RINGWOOD A E , KESSON S E , WARE N G , et al. Immobilisation of high level nuclear reactor wastes in SYNROC[J]. Nature, 1979, 278 (5701): 219- 223.
DOI |
10 |
NAKAGAWA M , OKADA M , ITOH H , et al. Lattice deffects in rutile, TiO2[J]. Radiation Effects and Defects in Solids, 1991, 119-121 (1): 153- 157.
DOI |
11 |
LUMPKIN G R , SMITH K L , BLACKFORD M G , et al. Experimental and atomistic modeling study of ion irradiation damage in thin crystals of the TiO2 polymorphs[J]. Physical Review B, 2008, 77 (21): 214201.
DOI |
12 | 唐万平, 丁晶洁, 李公平, 等. 2种耐核辐射涂料的耐辐照性能研究[J]. 涂料工业, 2018, 48 (12): 47- 53. |
13 |
GRAY R L , RUSHTON M J D , MURPHY S T . Molecular dynamics simulations of radiation damage in YBa2Cu3O7[J]. Superconductor Science and Technology, 2022, 35 (3): 035010.
DOI |
14 |
MORRIS J , COWEN B J , TEYSSEYRE S , et al. Molecular dynamics investigation of threshold displacement energies in CaF2[J]. Computational Materials Science, 2020, 172, 109293.
DOI |
15 |
BUCK E C . Effects of electron irradiation of rutile[J]. Radiation Effects and Defects in Solids, 1995, 133 (2): 141- 152.
DOI |
16 |
SMITH K L , COLELLA M , COOPER R , et al. Measured displacement energies of oxygen ions in titanates and zirconates[J]. Journal of Nuclear Materials, 2003, 321 (1): 19- 28.
DOI |
17 | THOMAS B S , MARKS N A , CORRALES L R , et al. Threshold displacement energies in rutile TiO2: A molecular dynamics simulation study[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 239 (3): 191- 201. |
18 |
ROBINSON M , MARKS N A , WHITTLE K R , et al. Systematic calculation of threshold displacement energies: Case study in rutile[J]. Physical Review B, 2012, 85 (10): 104105.
DOI |
19 |
ROBINSON M , MARKS N A , LUMPKIN G R . Sensitivity of the threshold displacement energy to temperature and time[J]. Physical Review B, 2012, 86 (13): 134105.
DOI |
20 |
COWEN B J , EI-GENK M S . Directional dependence of the threshold displacement energies in metal oxides[J]. Modelling and Simulation in Materials Science and Engineering, 2017, 25 (8): 085009.
DOI |
21 |
JACKSON M L , FOSSATI P C M , GRIMES R M . Simulations of threshold displacement in beryllium[J]. Journal of Applied Physics, 2016, 120 (4): 045903.
DOI |
22 | TANG P F , ZHENG Q R , LI J W , et al. Cluster dynamics modeling with spatial correlations in cascades[J]. Chinese Journal of Computational Physics, 2019, 36 (5): 586- 594. |
23 |
ZHANG X Y , CHEN X F , WANG H , et al. Molecular dynamics analysis of chemical disorders induced by irradiated point defects in 6H-SiC[J]. Journal of Inorganic Materials, 2020, 35 (8): 889- 894.
DOI |
24 |
THOMPSON A P , AKTULGA H M , BERGER R , et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271, 108171.
DOI |
25 |
MATSUI M , AKAOGI M . Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2[J]. Molecular Simulation, 1991, 6 (4-6): 239- 244.
DOI |
26 |
BOLZAN A A , FONG C , KENNEDY B J , et al. Structural studies of rutile-type metal dioxides[J]. Acta Crystallographica Section B-Structural Science, 1997, 53 (3): 373- 380.
DOI |
27 |
STUKOWSKI A . Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18 (1): 015012.
DOI |
28 | GONZALEZ E , ABREU Y , CRUZ C M , et al. Molecular-dynamics simulation of threshold displacement energies in BaTiO3[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2015, 358, 142- 145. |
29 |
COWEN B J , EL-GENK M S . Point defects production and energy thresholds for displacements in crystalline and amorphous SiC[J]. Computational Materials Science, 2018, 151, 73- 83.
DOI |
30 | THOMAS B S , MARKS N A , BEGG B D . Defects and threshold displacement energies in SrTiO3 perovskite using atomistic computer simulations[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 254 (2): 211- 218. |
31 | ZIEGLER J F , ZIEGLER M D , BIERSACK J P . SRIM-the stopping and range of ions in matter (2010)[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268 (11/12): 1818- 1823. |
32 |
NORDLUND K , ZINKLE S J , SAND A E , et al. Improving atomic displacement and replacement calculations with physically realistic damage models[J]. Nature Communications, 2018, 9 (1): 1084.
DOI |
33 | CAI J , LU D G , MA Y , et al. Structure evolution of defects in BCC iron by dislacement cascade: Molecular dynamics simulation[J]. Chinese Journal of Computational Physics, 2011, 28 (6): 915- 921. |
34 |
GAO X D , LV L L , ZHANG Z H , et al. A simulation study on the electromagnetic structure and optical properties of Co doped TiO2[J]. Computational Materials Science, 2022, 209, 111404.
DOI |
35 |
COWEN B J , EL-GENK M S . Characterization of radiation damage in TiO2 using molecular dynamics simulations[J]. Modelling and Simulation in Materials Science and Engineering, 2018, 26 (8): 085005.
DOI |
[1] | 温伯尧, 高根英, 路熙, 关松涛, 骆政园, 白博峰. 球状胶束中表面活性剂脱附的离子调控机制[J]. 计算物理, 2024, 41(2): 193-202. |
[2] | 李禹, 刘慧卿, 冯亚斌, 东晓虎, 王庆, 张波. 典型表活剂与稠油在蒙脱石表面吸附行为的分子动力学模拟[J]. 计算物理, 2023, 40(5): 583-596. |
[3] | 韦昭召, 刘凯, 李会军. NiAl合金纳米线弯曲形变行为的分子动力学模拟[J]. 计算物理, 2023, 40(4): 425-435. |
[4] | 侯兆阳, 牛媛, 肖启鑫, 王真, 邓庆田. Al纳米线不同晶向力学行为和变形机制的模拟[J]. 计算物理, 2022, 39(3): 341-351. |
[5] | 王晓慧, 张平. 高压下FCC相金属氢结构稳定性和非谐效应的理论研究[J]. 计算物理, 2022, 39(2): 159-164. |
[6] | 阿湖宝, 杨志兵, 胡冉, 陈益峰. 纳米尺度下毛细流动的分子动力学模拟[J]. 计算物理, 2021, 38(5): 603-611. |
[7] | 王国华, 崔雅茹, 杨泽, 李小明, 汤宏亮, 杨树峰. FexO-SiO2-CaO-MgO-“NiO”系镍渣势函数及分子动力学模拟[J]. 计算物理, 2021, 38(2): 215-223. |
[8] | 王雪梅, 董斌, 朱子亮, 杨俊升. 聚合物分子与官能化纳米管相互作用及扩散特性的分子动力学模拟[J]. 计算物理, 2020, 37(5): 589-594. |
[9] | 和二斌, 罗志荣, 朱留华. 肌红蛋白力致去折叠的全原子分析[J]. 计算物理, 2020, 37(2): 205-211. |
[10] | 周璐, 马红和. 超临界水中硫酸钠结晶动力学的分子动力学模拟[J]. 计算物理, 2020, 37(2): 212-220. |
[11] | 史晓蕊, 刘振宇, 吴慧英. 纳米孔壁面作用对蛋白质过孔影响的粗粒化分子动力学模拟[J]. 计算物理, 2020, 37(1): 63-68. |
[12] | 柴汝宽, 刘月田, 王俊强, 辛晶, 皮建, 李长勇. 分子动力学模拟方解石和白云石润湿性[J]. 计算物理, 2019, 36(4): 474-482. |
[13] | 王帅创, 张弓木, 孙博, 宋海峰, 田明锋, 方俊, 刘海风. 量子分子动力学模拟液体钚的输运性质[J]. 计算物理, 2019, 36(3): 253-258. |
[14] | 梁华, 李茂生. 孔洞和空位对单晶铝力学性能影响的分子动力学研究[J]. 计算物理, 2019, 36(2): 211-218. |
[15] | 张海燕, 殷新春. 简单金属固液界面固化过程生长机制的分子动力学研究[J]. 计算物理, 2019, 36(1): 80-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发